Tumor and Host Determinants of Pulmonary Metastasis in Bladder Cancer



Despite the recent advances in the diagnosis of bladder cancer, ­recurrence after surgical intervention for muscle invasive disease is still problematic as nearly half of patients harbor occult distant metastases. Clinical data from human disease revealed that, invasive and metastatic bladder cancer cells can metastasize to lungs, and this in turn is associated with poor 5-year survival rate. Experimental rodent models of carcinogenesis and metastasis are available to study this phenomenon. Comparative gene expression profiling, proteomic and computational studies identified an intertwined network of metastasis promoters and suppressors that modulate the interactions between the components of the pulmonary milieu and cancer cells inflammatory mediators, ECM molecules, as well as peptide hormones. In this chapter we provide select exemplar of some of the molecular mechanisms underlying lung colonization by bladder cancer.


Bladder Cancer Bladder Cancer Cell Urothelial Cancer Human Bladder Cancer Bladder Cancer Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300PubMedGoogle Scholar
  2. 2.
    Wu XR (2005) Urothelial tumorigenesis: a tale of divergent pathways. Nat Rev Cancer 5:713–725PubMedGoogle Scholar
  3. 3.
    Rocken M (2010) Early tumor dissemination, but late metastasis: insights into tumor ­dormancy. J Clin Invest 120:1800–1803PubMedGoogle Scholar
  4. 4.
    Steeg PS, Theodorescu D (2008) Metastasis: a therapeutic target for cancer. Nat Clin Pract Oncol 5:206–219PubMedGoogle Scholar
  5. 5.
    Ewing J (1928) A treatise on tumors. In: Ewing J (ed) Neoplastic disease, 3rd edn. WB Saunders, Philadelphia, pp 77–89Google Scholar
  6. 6.
    Zetter BR (1990) The cellular basis of site-specific tumor metastasis. N Engl J Med 322:605–612PubMedGoogle Scholar
  7. 7.
    Luo JL, Maeda S, Hsu LC, Yagita H, Karin M (2004) Inhibition of NF-kappaB in cancer cells converts inflammation- induced tumor growth mediated by TNFalpha to TRAIL-mediated tumor regression. Cancer Cell 6:297–305PubMedGoogle Scholar
  8. 8.
    Paget S (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8:98–101PubMedGoogle Scholar
  9. 9.
    Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127:679–695PubMedGoogle Scholar
  10. 10.
    Kim S, Takahashi H, Lin WW, Descargues P, Grivennikov S, Kim Y et al (2009) Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457:102–106PubMedGoogle Scholar
  11. 11.
    Luo JL, Tan W, Ricono JM, Korchynskyi O, Zhang M, Gonias SL et al (2007) Nuclear cytokine-activated IKKalpha controls prostate cancer metastasis by repressing Maspin. Nature 446:690–694PubMedGoogle Scholar
  12. 12.
    Kaplan RN, Rafii S, Lyden D (2006) Preparing the “soil”: the premetastatic niche. Cancer Res 66:11089–11093PubMedGoogle Scholar
  13. 13.
    Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827PubMedGoogle Scholar
  14. 14.
    Said N, Smith SC, Sanchez-Carbayo M, Theodorescu D (2011) Tumor Endothelin-1 contributes to macrophage infiltration and metastatic colonization of murine lungs by human cancer cells. J Clin Invest 121(1):132–147Google Scholar
  15. 15.
    SenBanerjee S, Lin Z, Atkins GB, Greif DM, Rao RM, Kumar A et al (2004) KLF2 is a novel transcriptional regulator of endothelial proinflammatory activation. J Exp Med 199:1305–1315PubMedGoogle Scholar
  16. 16.
    Mantovani A (2009) Cancer: inflaming metastasis. Nature 457:36–37PubMedGoogle Scholar
  17. 17.
    Bidard FC, Pierga JY, Vincent-Salomon A, Poupon MF (2008) A “class action” against the microenvironment: do cancer cells cooperate in metastasis? Cancer Metastasis Rev 27:5–10PubMedGoogle Scholar
  18. 18.
    Tieu BC, Lee C, Sun H, Lejeune W, Recinos A 3rd, Ju X et al (2009) An adventitial IL-6/MCP1 amplification loop accelerates macrophage-mediated vascular inflammation leading to aortic dissection in mice. J Clin Invest 119:3637–3651PubMedGoogle Scholar
  19. 19.
    Qian B, Deng Y, Im JH, Muschel RJ, Zou Y, Li J et al (2009) A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One 4:e6562PubMedGoogle Scholar
  20. 20.
    Taranova AG, Maldonado D 3rd, Vachon CM, Jacobsen EA, Abdala-Valencia H, McGarry MP et al (2008) Allergic pulmonary inflammation promotes the recruitment of circulating tumor cells to the lung. Cancer Res 68:8582–8589PubMedGoogle Scholar
  21. 21.
    Qi Y, Liang J, She ZG, Cai Y, Wang J, Lei T et al (2010) MCP-induced protein 1 suppresses TNFalpha-induced VCAM-1 expression in human endothelial cells. FEBS Lett 584(14):3065–3072PubMedGoogle Scholar
  22. 22.
    Rollins BJ (1996) Monocyte chemoattractant protein 1: a potential regulator of monocyte recruitment in inflammatory disease. Mol Med Today 2:198–204PubMedGoogle Scholar
  23. 23.
    Hess S, Methe H, Kim JO, Edelman ER (2009) NF-kappaB activity in endothelial cells is modulated by cell substratum interactions and influences chemokine-mediated adhesion of natural killer cells. Cell Transplant 18:261–273PubMedGoogle Scholar
  24. 24.
    Collins T, Cybulsky MI (2001) NF-kappaB: pivotal mediator or innocent bystander in atherogenesis? J Clin Invest 107:255–264PubMedGoogle Scholar
  25. 25.
    Hiratsuka S, Nakamura K, Iwai S, Murakami M, Itoh T, Kijima H et al (2002) MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2:289–300PubMedGoogle Scholar
  26. 26.
    Hiratsuka S, Watanabe A, Aburatani H, Maru Y (2006) Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 8:1369–1375PubMedGoogle Scholar
  27. 27.
    Said N, and Theodorescu, D. Role of Versican in Bladder Cancer Metastasis to Lungs. AACR-Joint Tumor Microenvironment and Metastasis Research Society Meeting; 2010 September, 2010; Philadelphia, PA; 2010.Google Scholar
  28. 28.
    Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252PubMedGoogle Scholar
  29. 29.
    Hagemann T, Balkwill F, Lawrence T (2007) Inflammation and cancer: a double-edged sword. Cancer Cell 12:300–301PubMedGoogle Scholar
  30. 30.
    Corzo CA, Condamine T, Lu L, Cotter MJ, Youn JI, Cheng P et al (2010) HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med 207:2439–2453PubMedGoogle Scholar
  31. 31.
    Imtiyaz HZ, Williams EP, Hickey MM, Patel SA, Durham AC, Yuan LJ et al (2010) Hypoxia-inducible factor 2alpha regulates macrophage function in mouse models of acute and tumor inflammation. J Clin Invest 120:2699–2714PubMedGoogle Scholar
  32. 32.
    Doedens AL, Stockmann C, Rubinstein MP, Liao D, Zhang N, DeNardo DG et al (2010) Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res 70:7465–7475PubMedGoogle Scholar
  33. 33.
    Ricciardelli C, Sakko AJ, Ween MP, Russell DL, Horsfall DJ (2009) The biological role and regulation of versican levels in cancer. Cancer Metastasis Rev 28:233–245PubMedGoogle Scholar
  34. 34.
    Lee JH, Kim SH, Lee ES, Kim YS (2009) CD24 overexpression in cancer development and progression: a meta-analysis. Oncol Rep 22:1149–1156PubMedGoogle Scholar
  35. 35.
    Yee AJ, Akens M, Yang BL, Finkelstein J, Zheng PS, Deng Z et al (2007) The effect of versican G3 domain on local breast cancer invasiveness and bony metastasis. Breast Cancer Res 9:R47PubMedGoogle Scholar
  36. 36.
    Wang W, Xu GL, Jia WD, Ma JL, Li JS, Ge YS et al (2009) Ligation of TLR2 by versican: a link between inflammation and metastasis. Arch Med Res 40:321–323PubMedGoogle Scholar
  37. 37.
    Chiodoni C, Colombo MP, Sangaletti S (2010) Matricellular proteins: from homeostasis to inflammation, cancer, and metastasis. Cancer Metastasis Rev 29:295–307PubMedGoogle Scholar
  38. 38.
    Folberg R, Arbieva Z, Moses J, Hayee A, Sandal T, Kadkol S et al (2006) Tumor cell plasticity in uveal melanoma: microenvironment directed dampening of the invasive and metastatic genotype and phenotype accompanies the generation of vasculogenic mimicry patterns. Am J Pathol 169:1376–1389PubMedGoogle Scholar
  39. 39.
    Gildea JJ, Seraj MJ, Oxford G, Harding MA, Hampton GM, Moskaluk CA et al (2002) RhoGDI2 is an invasion and metastasis suppressor gene in human cancer. Cancer Res 62:6418–6423PubMedGoogle Scholar
  40. 40.
    Theodorescu D, Sapinoso LM, Conaway MR, Oxford G, Hampton GM, Frierson HF Jr (2004) Reduced expression of metastasis suppressor RhoGDI2 is associated with decreased survival for patients with bladder cancer. Clin Cancer Res 10:3800–3806PubMedGoogle Scholar
  41. 41.
    Said N, Theodorescu D (2009) Pathways of metastasis suppression in bladder cancer. Cancer Metastasis Rev 28:327–333PubMedGoogle Scholar
  42. 42.
    Titus B, Frierson HF Jr, Conaway M, Ching K, Guise T, Chirgwin J et al (2005) Endothelin axis is a target of the lung metastasis suppressor gene RhoGDI2. Cancer Res 65:7320–7327PubMedGoogle Scholar
  43. 43.
    Wu Y, Siadaty MS, Berens ME, Hampton GM, Theodorescu D (2008) Overlapping gene expression profiles of cell migration and tumor invasion in human bladder cancer identify metallothionein 1E and nicotinamide N-methyltransferase as novel regulators of cell ­migration. Oncogene 27:6679–6689PubMedGoogle Scholar
  44. 44.
    Kedzierski RM, Yanagisawa M (2001) ENDOTHELIN SYSTEM: the double-edged sword in health and disease. Annu Rev Pharmacol Toxicol 41:851–876PubMedGoogle Scholar
  45. 45.
    Herrmann E, Tiemann A, Eltze E, Bolenz C, Bremer C, Persigehl T et al (2009) Endothelin-A-receptor antagonism with atrasentan exhibits limited activity on the KU-19-19 bladder cancer cell line in a mouse model. J Cancer Res Clin Oncol 135:1455–1462PubMedGoogle Scholar
  46. 46.
    Herrmann E, Bogemann M, Bierer S, Eltze E, Toma MI, Kopke T et al (2007) The role of the endothelin axis and microvessel density in bladder cancer – correlation with tumor angiogenesis and clinical prognosis. Oncol Rep 18:133–138PubMedGoogle Scholar
  47. 47.
    Bagnato A, Spinella F, Rosano L (2005) Emerging role of the endothelin axis in ovarian tumor progression. Endocr Relat Cancer 12:761–772PubMedGoogle Scholar
  48. 48.
    Giaid A, Hamid QA, Springall DR, Yanagisawa M, Shinmi O, Sawamura T et al (1990) Detection of endothelin immunoreactivity and mRNA in pulmonary tumours. J Pathol 162:15–22PubMedGoogle Scholar
  49. 49.
    Rosano L, Spinella F, Di Castro V, Nicotra MR, Dedhar S, de Herreros AG et al (2005) Endothelin-1 promotes epithelial-to-mesenchymal transition in human ovarian cancer cells. Cancer Res 65:11649–11657PubMedGoogle Scholar
  50. 50.
    Kandalaft LE, Facciabene A, Buckanovich RJ, Coukos G (2009) Endothelin B receptor, a new target in cancer immune therapy. Clin Cancer Res 15(14):4521–4528PubMedGoogle Scholar
  51. 51.
    Sutcliffe AM, Clarke DL, Bradbury DA, Corbett LM, Patel JA, Knox AJ (2009) Transcriptional regulation of monocyte chemotactic protein-1 release by endothelin-1 in human airway smooth muscle cells involves NF-kappaB and AP-1. Br J Pharmacol 157:436–450PubMedGoogle Scholar
  52. 52.
    Spinella F, Rosano L, Di Castro V, Natali PG, Bagnato A (2004) Endothelin-1-induced prostaglandin E2-EP2, EP4 signaling regulates vascular endothelial growth factor production and ovarian carcinoma cell invasion. J Biol Chem 279:46700–46705PubMedGoogle Scholar
  53. 53.
    Spinella F, Rosano L, Di Castro V, Nicotra MR, Natali PG, Bagnato A (2004) Inhibition of cyclooxygenase-1 and -2 expression by targeting the endothelin a receptor in human ovarian carcinoma cells. Clin Cancer Res 10:4670–4679PubMedGoogle Scholar
  54. 54.
    Wight TN (2002) Versican: a versatile extracellular matrix proteoglycan in cell biology. Curr Opin Cell Biol 14:617–623PubMedGoogle Scholar
  55. 55.
    Domenzain C, Docampo MJ, Serra M, Miquel L, Bassols A (2003) Differential expression of versican isoforms is a component of the human melanoma cell differentiation process. Biochim Biophys Acta 1642:107–114PubMedGoogle Scholar
  56. 56.
    Ricciardelli C, Russell DL, Ween MP, Mayne K, Suwiwat S, Byers S et al (2007) Formation of hyaluronan- and versican-rich pericellular matrix by prostate cancer cells promotes cell motility. J Biol Chem 282:10814–10825PubMedGoogle Scholar
  57. 57.
    Lin HM, Chatterjee A, Lin YH, Anjomshoaa A, Fukuzawa R, McCall JL et al (2007) Genome wide expression profiling identifies genes associated with colorectal liver metastasis. Oncol Rep 17:1541–1549PubMedGoogle Scholar
  58. 58.
    Skandalis SS, Kletsas D, Kyriakopoulou D, Stavropoulos M, Theocharis DA (2006) The greatly increased amounts of accumulated versican and decorin with specific post-translational modifications may be closely associated with the malignant phenotype of pancreatic cancer. Biochim Biophys Acta 1760:1217–1225PubMedGoogle Scholar
  59. 59.
    Hirakawa S, Hong YK, Harvey N, Schacht V, Matsuda K, Libermann T et al (2003) Identification of vascular lineage-specific genes by transcriptional profiling of isolated blood vascular and lymphatic endothelial cells. Am J Pathol 162:575–586PubMedGoogle Scholar
  60. 60.
    Malemud CJ (2006) Matrix metalloproteinases (MMPs) in health and disease: an overview. Front Biosci 11:1696–1701PubMedGoogle Scholar
  61. 61.
    Ricciardelli C, Brooks JH, Suwiwat S, Sakko AJ, Mayne K, Raymond WA et al (2002) Regulation of stromal versican expression by breast cancer cells and importance to relapse-free survival in patients with node-negative primary breast cancer. Clin Cancer Res 8:1054–1060PubMedGoogle Scholar
  62. 62.
    Domenzain-Reyna C, Hernandez D, Miquel-Serra L, Docampo MJ, Badenas C, Fabra A et al (2009) Structure and regulation of the versican promoter: the versican promoter is regulated by AP-1 and TCF transcription factors in invasive human melanoma cells. J Biol Chem 284:12306–12317PubMedGoogle Scholar
  63. 63.
    Brown LF, Guidi AJ, Schnitt SJ, Van De Water L, Iruela-Arispe ML, Yeo TK et al (1999) Vascular stroma formation in carcinoma in situ, invasive carcinoma, and metastatic carcinoma of the breast. Clin Cancer Res 5:1041–1056PubMedGoogle Scholar
  64. 64.
    Kischel P, Waltregny D, Dumont B, Turtoi A, Greffe Y, Kirsch S et al (2010) Versican overexpression in human breast cancer lesions: known and new isoforms for stromal tumor targeting. Int J Cancer 126:640–650PubMedGoogle Scholar
  65. 65.
    Paris S, Sesboue R, Chauzy C, Maingonnat C, Delpech B (2006) Hyaluronectin modulation of lung metastasis in nude mice. Eur J Cancer 42:3253–3259PubMedGoogle Scholar
  66. 66.
    Said N, Theodorescu D (2009) The metastasis suppressor RhoGDI2 suppresses expression of Versican, an invasion associated and macrophage stimulatory molecule. In: Proceedings of the American Association for Cancer Research, 2009 Apr 18–22, Denver, CO. AACR, Philadelphia (PA), 2009. Abstract nr 4810Google Scholar
  67. 67.
    Smith SC, Oxford G, Wu Z, Nitz MD, Conaway M, Frierson HF et al (2006) The metastasis-associated gene CD24 is regulated by Ral GTPase and is a mediator of cell proliferation and survival in human cancer. Cancer Res 66:1917–1922PubMedGoogle Scholar
  68. 68.
    Smith SC, Theodorescu D (2009) The Ral GTPase pathway in metastatic bladder cancer: key mediator and therapeutic target. Urol Oncol 27:42–47PubMedGoogle Scholar
  69. 69.
    Wang H, Owens C, Chandra N, Conaway MR, Brautigan DL, Theodorescu D (2010) Phosphorylation of RalB is important for bladder cancer cell growth and metastasis. Cancer Res 70:8760–8769PubMedGoogle Scholar
  70. 70.
    Wu Z, Owens C, Chandra N, Popovic K, Conaway M, Theodorescu D (2010) RalBP1 is necessary for metastasis of human cancer cell lines. Neoplasia 12(12):969–979PubMedGoogle Scholar
  71. 71.
    Henry DO, Moskalenko SA, Kaur KJ, Fu M, Pestell RG, Camonis JH et al (2000) Ral GTPases contribute to regulation of cyclin D1 through activation of NF-kappaB. Mol Cell Biol 20:8084–8092PubMedGoogle Scholar
  72. 72.
    Chien Y, Kim S, Bumeister R, Loo YM, Kwon SW, Johnson CL et al (2006) RalB GTPase-mediated activation of the IkappaB family kinase TBK1 couples innate immune signaling to tumor cell survival. Cell 127:157–170PubMedGoogle Scholar
  73. 73.
    Pirruccello SJ, LeBien TW (1986) The human B cell-associated antigen CD24 is a single chain sialoglycoprotein. J Immunol 136:3779–3784PubMedGoogle Scholar
  74. 74.
    Kristiansen G, Pilarsky C, Pervan J, Sturzebecher B, Stephan C, Jung K et al (2004) CD24 expression is a significant predictor of PSA relapse and poor prognosis in low grade or organ confined prostate cancer. Prostate 58:183–192PubMedGoogle Scholar
  75. 75.
    Fogel M, Friederichs J, Zeller Y, Husar M, Smirnov A, Roitman L et al (1999) CD24 is a marker for human breast carcinoma. Cancer Lett 143:87–94PubMedGoogle Scholar
  76. 76.
    Aigner S, Ramos CL, Hafezi-Moghadam A, Lawrence MB, Friederichs J, Altevogt P et al (1998) CD24 mediates rolling of breast carcinoma cells on P-selectin. FASEB J 12:1241–1251PubMedGoogle Scholar
  77. 77.
    Lopes EC, Ernst G, Aulicino P, Vanzulli S, Garcia M, Alvarez E et al (2002) Dissimilar invasive and metastatic behavior of vincristine and doxorubicin-resistant cell lines derived from a murine T cell lymphoid leukemia. Clin Exp Metastasis 19:283–290PubMedGoogle Scholar
  78. 78.
    Liu W, Vadgama JV (2000) Identification and characterization of amino acid starvation-induced CD24 gene in MCF-7 human breast cancer cells. Int J Oncol 16:1049–1054PubMedGoogle Scholar
  79. 79.
    Ma YQ, Geng JG (2002) Obligatory requirement of sulfation for P-selectin binding to human salivary gland carcinoma Acc-M cells and breast carcinoma ZR-75-30 cells. J Immunol 168:1690–1696PubMedGoogle Scholar
  80. 80.
    Kristiansen G, Sammar M, Altevogt P (2004) Tumour biological aspects of CD24, a mucin-like adhesion molecule. J Mol Histol 35:255–262PubMedGoogle Scholar
  81. 81.
    Ikenaga N, Ohuchida K, Mizumoto K, Yu J, Kayashima T, Hayashi A et al (2010) Characterization of CD24 expression in intraductal papillary mucinous neoplasms and ductal carcinoma of the pancreas. Hum Pathol 41:1466–1474PubMedGoogle Scholar
  82. 82.
    Lee HJ, Choe G, Jheon S, Sung SW, Lee CT, Chung JH (2010) CD24, a novel cancer biomarker, predicting disease-free survival of non-small cell lung carcinomas: a retrospective study of prognostic factor analysis from the viewpoint of forthcoming (seventh) new TNM classification. J Thorac Oncol 5:649–657PubMedGoogle Scholar
  83. 83.
    Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715PubMedGoogle Scholar
  84. 84.
    Dontu G, Liu S, Wicha MS (2005) Stem cells in mammary development and carcinogenesis: implications for prevention and treatment. Stem Cell Rev 1:207–213PubMedGoogle Scholar
  85. 85.
    Lim SC, Oh SH (2005) The role of CD24 in various human epithelial neoplasias. Pathol Res Pract 201:479–486PubMedGoogle Scholar
  86. 86.
    Liu AY, Roudier MP, True LD (2004) Heterogeneity in primary and metastatic prostate ­cancer as defined by cell surface CD profile. Am J Pathol 165:1543–1556PubMedGoogle Scholar
  87. 87.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988PubMedGoogle Scholar
  88. 88.
    Baumann P, Cremers N, Kroese F, Orend G, Chiquet-Ehrismann R, Uede T et al (2005) CD24 expression causes the acquisition of multiple cellular properties associated with tumor growth and metastasis. Cancer Res 65:10783–10793PubMedGoogle Scholar
  89. 89.
    Gassmann P, Kang ML, Mees ST, Haier J (2010) In vivo tumor cell adhesion in the pulmonary microvasculature is exclusively mediated by tumor cell–endothelial cell interaction. BMC Cancer 10:177PubMedGoogle Scholar
  90. 90.
    Kohler S, Ullrich S, Richter U, Schumacher U (2010) E-/P-selectins and colon carcinoma metastasis: first in vivo evidence for their crucial role in a clinically relevant model of spontaneous metastasis formation in the lung. Br J Cancer 102:602–609PubMedGoogle Scholar
  91. 91.
    McDonald B, Spicer J, Giannais B, Fallavollita L, Brodt P, Ferri LE (2009) Systemic inflammation increases cancer cell adhesion to hepatic sinusoids by neutrophil mediated mechanisms. Int J Cancer 125:1298–1305PubMedGoogle Scholar
  92. 92.
    Schmidmaier R, Baumann P (2008) ANTI-ADHESION evolves to a promising therapeutic concept in oncology. Curr Med Chem 15:978–990PubMedGoogle Scholar
  93. 93.
    Laubli H, Stevenson JL, Varki A, Varki NM, Borsig L (2006) L-selectin facilitation of metastasis involves temporal induction of Fut7-dependent ligands at sites of tumor cell arrest. Cancer Res 66:1536–1542PubMedGoogle Scholar
  94. 94.
    Fritzsche J, Hunerbein I, Schumacher G, Alban S, Ludwig R, Gille J et al (2005) In vitro investigation on the selectin binding mechanisms in tumor cell metastasis and their inhibition by heparin. Int J Clin Pharmacol Ther 43:570–572PubMedGoogle Scholar
  95. 95.
    Ludwig RJ, Boehme B, Podda M, Henschler R, Jager E, Tandi C et al (2004) Endothelial P-selectin as a target of heparin action in experimental melanoma lung metastasis. Cancer Res 64:2743–2750PubMedGoogle Scholar
  96. 96.
    Louie E, Nik S, Chen JS, Schmidt M, Song B, Pacson C et al (2010) Identification of a stem-like cell population by exposing metastatic breast cancer cell lines to repetitive cycles of hypoxia and reoxygenation. Breast Cancer Res 12:R94PubMedGoogle Scholar
  97. 97.
    Storci G, Sansone P, Mari S, D’Uva G, Tavolari S, Guarnieri T et al (2010) TNFalpha up-regulates SLUG via the NF-kappaB/HIF1alpha axis, which imparts breast cancer cells with a stem cell-like phenotype. J Cell Physiol 225:682–691PubMedGoogle Scholar
  98. 98.
    Shpitz B, Giladi N, Sagiv E, Lev-Ari S, Liberman E, Kazanov D et al (2006) Celecoxib and curcumin additively inhibit the growth of colorectal cancer in a rat model. Digestion 74:140–144PubMedGoogle Scholar
  99. 99.
    Sagiv E, Arber N (2008) The novel oncogene CD24 and its arising role in the carcinogenesis of the GI tract: from research to therapy. Expert Rev Gastroenterol Hepatol 2:125–133PubMedGoogle Scholar
  100. 100.
    Sagiv E, Starr A, Rozovski U, Khosravi R, Altevogt P, Wang T et al (2008) Targeting CD24 for treatment of colorectal and pancreatic cancer by monoclonal antibodies or small interfering RNA. Cancer Res 68:2803–2812PubMedGoogle Scholar
  101. 101.
    Choi YL, Lee SH, Kwon GY, Park CK, Han JJ, Choi JS et al (2007) Overexpression of CD24: association with invasiveness in urothelial carcinoma of the bladder. Arch Pathol Lab Med 131:275–281PubMedGoogle Scholar
  102. 102.
    Sagiv E, Memeo L, Karin A, Kazanov D, Jacob-Hirsch J, Mansukhani M et al (2006) CD24 is a new oncogene, early at the multistep process of colorectal cancer carcinogenesis. Gastroenterology 131:630–639PubMedGoogle Scholar
  103. 103.
    Sagiv E, Kazanov D, Arber N (2006) CD24 plays an important role in the carcinogenesis process of the pancreas. Biomed Pharmacother 60:280–284PubMedGoogle Scholar
  104. 104.
    Sagiv E, Rozovski U, Kazanov D, Liberman E, Arber N (2007) Gene expression analysis proposes alternative pathways for the mechanism by which celecoxib selectively inhibits the growth of transformed but not normal enterocytes. Clin Cancer Res 13:6807–6815PubMedGoogle Scholar
  105. 105.
    Overdevest JB, Smith SC, Thomas S, Theodorescu D (2009) CD24: target for a novel anti-metastatic therapeutic. In: Proceedings of the American Association for Cancer Research, 2009 Apr 18–22, Denver, CO. AACR, Philadelphia (PA), 2009. Abstract nr 4941Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of UrologyPaul Mellon Urologic Cancer Institute, University of VirginiaCharlottesvilleUSA
  2. 2.Departments of Surgery and PharmacologyUniversity of Colorado Comprehensive Cancer CenterAuroraUSA

Personalised recommendations