Superresolution Optical Fluctuation Imaging (SOFI)

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 733)


Superresolution microscopy has shifted the limits for fluorescence microscopy in cell ­biology. The possibility to image cellular structures and dynamics of fixed and even live cells and organisms at resolutions of several nanometers holds great promise for future biological discoveries. We recently introduced a novel superresolution technique, based on the statistical evaluation of stochastic fluctuations stemming from single emitters, dubbed “superresolution optical fluctuation ­imaging” (SOFI). In comparison to previously introduced superresolution methods, SOFI exhibits favorable attributes such as simplicity, affordability, high speed, and low levels of light exposure. Here we summarize the basic working principle and recent advances.


Superresolution Statistical analysis Correlation function 



This work was supported by NIH grant# 5R01EB000312 and NIH grant# 1R01GM086197. Thomas Dertinger is supported by the German Science Foundation (DFG, fellowship # DE 1591/1 1). Jörg Enderlein acknowledges financial support by the Human Frontier Science Program (RGP46/2006) and by the German Federal Ministry of Education and Research (FKZ 13N9236).


  1. Abbe, E. (1873). Contributions to the theory of the microscope and the microscopic perception (Translated from German). Archiv Fur Mikroskopische Anatomic, 9, 413–468.CrossRefGoogle Scholar
  2. Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacino, J. S., et al. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313(5793), 1642–1645. doi:10.1126/science.1127344.PubMedCrossRefGoogle Scholar
  3. Biteen, J. S., Thompson, M. A., Tselentis, N. K., Bowman, G. R., Shapiro, L., & Moerner, W. E. (2008). Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP. Nature Methods, 5(11), 947–949. doi:10.1038/nmeth.1258.Google Scholar
  4. Dertinger, T., Colyer, R., Iyer, G., Weiss, S., & Enderlein, J. (2009). Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proceedings of the National Academy of Sciences of the United States of America, 106(52), 22287–22292. doi:10.1073/pnas.0907866106.PubMedCrossRefGoogle Scholar
  5. Dertinger, T., Colyer, R., Vogel, R., Enderlein, J., & Weiss, S. (2010a). Achieving increased resolution and more pixels with Superresolution Optical Fluctuation Imaging (SOFI). Optics Express, 18(18), 18875. doi:10.1364/OE.18.018875.Google Scholar
  6. Dertinger, T., Heilemann, M., Vogel, R., Sauer, M., & Weiss, S. (2010b). Superresolution optical fluctuation imaging with organic dyes. Angewandte Chemie (International ed. in English), 49(49), 9441–9443. doi:10.1002/anie.201004138.CrossRefGoogle Scholar
  7. Fölling, J., Bossi, M., Bock, H., Medda, R., Wurm, C. A., Hein, B., et al. (2008). Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nature Methods, 5(11), 943–945. doi:10.1038/nmeth.1257.PubMedCrossRefGoogle Scholar
  8. Heilemann, M., van de Linde, S., Schuttpelz, M., Kasper, R., Seefeldt, B., Mukherjee, A., et al. (2008). Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angewandte Chemie (International ed. in English), 47(33), 6172–6176. doi:10.1002/anie.200802376.CrossRefGoogle Scholar
  9. Hell, S., & Wichmann, J. (1994). Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Optics Letters, 19(11), 780–782. Scholar
  10. Hess, S. T., Girirajan, T. P. K., & Mason, M. D. (2006). Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophysical Journal, 91(11), 4258–4272. doi:10.1529/biophysj.106.091116.PubMedCrossRefGoogle Scholar
  11. Mitchell, M. W., Lundeen, J. S., & Steinberg, A. M. (2004). Super-resolving phase measurements with a multiphoton entangled state. Nature, 429(6988), 161–164. doi:10.1038/nature02493.PubMedCrossRefGoogle Scholar
  12. Rust, M. J., Bates, M., & Zhuang, X. (2006). Sub-diffraction-limit imaging by stochastic optical reconstruction ­microscopy (STORM). Nature Methods, 3(10), 793–795. doi:10.1038/nmeth929.PubMedCrossRefGoogle Scholar
  13. Walther, P., Pan, J.-W., Aspelmeyer, M., Ursin, R., Gasparoni, S., & Zeilinger, A. (2004). De Broglie wavelength of a non-local four-photon state. Nature, 429(6988), 158–161. doi:10.1038/nature02552.PubMedCrossRefGoogle Scholar
  14. Westphal, V., Rizzoli, S. O., Lauterbach, M. A., Kamin, D., Jahn, R., & Hell, S. (2008). Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science, 320(5873), 246–249. doi:10.1126/science.1154228.PubMedCrossRefGoogle Scholar
  15. Wombacher, R., Heidbreder, M., van de Linde, S., Sheetz, M. P., Heilemann, M., Cornish, V. W., et al. (2010). Live-cell super-resolution imaging with trimethoprim conjugates. Nature Methods. doi:10.1038/nmeth.1489.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of California Los AngelesLos AngelesUSA
  2. 2.Department of Physics, Applied Laser PhysicsBielefeld UniversityBielefeldGermany
  3. 3.Department of Biotechnology and BiophysicsJulius-Maximilians-Universität WürzburgWürzburgGermany
  4. 4.III Institute of PhysicsGeorg August UniversityGöttingenGermany
  5. 5.Department of PhysiologyUniversity of California Los Angeles, UCLALos AngelesUSA
  6. 6.California NanoSystems Institute, University of California Los Angeles, UCLALos AngelesUSA

Personalised recommendations