Advertisement

Introduction

  • Dominique François
  • André Pineau
  • André Zaoui
Chapter
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 180)

Abstract

General considerations specify the nature of materials, and their importance, in particular regarding their mechanical properties. The main classes of materials derive from the atomic bonds types, which determine their overall mechanical properties. The various mechanical behaviours and modes of failure are described. This helps in the choice of a material for a particular application. A description is given of the main instruments for the observation of microstructures at various scales. A number of typical microstructures are displayed. Mechanical testing machines are described. The way to perform tensile tests in particular, as well as other usual tests, is briefly detailed in keeping with international standards. Indications are given on the measurement of elastic properties. The various mechanical behaviours determine the main classes of constitutive equations. They must fulfil several conditions, which are detailed. The stages followed in the treatment of heterogeneous materials are explained and illustrated by examples. Indications are given about anisotropy and its consequence on the constitutive equations.

Keywords

Fatigue Crack Constitutive Equation Digital Image Correlation Representative Volume Element Test Piece 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Argon A, Mc Clintock F (1966) Mechanical properties of materials. Addison Wesley, ReadingGoogle Scholar
  2. Ashby MF (1989) Materials selection in conceptual design. Mater Sci Technol 5:517–525CrossRefGoogle Scholar
  3. Ashby MF (1999) Materials selection in mechanical design. Reed Educational and Professional Pub, OxfordGoogle Scholar
  4. ASTM E 1921 –02 (2002) Standards test method for determination of reference temperature T0 for ferritic steels in the transition rangeGoogle Scholar
  5. Behrenat S, Scherp M, Erdmann L, Kahlenhorn W, Moira F, Dereje C, Bleischwitz R, Delzeit R (2007) Rare metals. Measures and concepts for the solution of the problem of conflict aggravating rare material extraction. Report 363 01124 UBA_FB 000980 Federal Environmental Agency DessauGoogle Scholar
  6. Berger MH, Wicky D, Payot S, Cloots R, Vertruyen B Archambeau (2011) Thin Solid Films (to appear)Google Scholar
  7. Brooks CR (1982) Heat treatment; structure and properties of non-ferrous alloys. American Society for Metals, Metals ParkGoogle Scholar
  8. Clavel M, Pineau A (1982a) Fatigue behaviour of two Ni-base alloys. Part I: experimental results on low cycle fatigue, fatigue crack propagation and substructures. Mater Sci Eng 55:157–171CrossRefGoogle Scholar
  9. Clavel M, Pineau A (1982b) Fatigue behaviour of two Ni-base alloys. Part II: physical modelling of the fatigue crack propagation and substructures. Mater Sci Eng 55:173–180CrossRefGoogle Scholar
  10. Cozar R, Pineau A (1973) Morphology of γ and γ”” precipitates and thermal stability of inconel 718 type alloys. Met Trans 4:47CrossRefGoogle Scholar
  11. Egerton RF (1996) Electron energy-loss spectroscopy in the electron microscope. SpringerGoogle Scholar
  12. Egerton RF (2005) Physical principles of electron microscopy. Springer, New YorkCrossRefGoogle Scholar
  13. ESIS (1992) Recommendation for determining the fracture toughness of materials. ESIS procedure P2/92Google Scholar
  14. Flower HM, Gregson PJ (1987) Critical assessment: solid-state phase transformation in aluminum alloys containing lithium. In: Buschow KHJ (ed). Mater Sci Technol 3:81–90Google Scholar
  15. François D (2008a) Structural components. Wiley, Hoboken, pp 73–88CrossRefGoogle Scholar
  16. François D (2008b) Structural components. Wiley, Hoboken, pp 73–88CrossRefGoogle Scholar
  17. François D, Pineau A (2002) From Charpy to present impact tests. Elsevier, AmsterdamGoogle Scholar
  18. Frund J-M (2008) Impact tests. In: François D (ed) Structural components. Wiley, Hoboken, pp 193–205CrossRefGoogle Scholar
  19. Gadaud P (2008) Measurements of elastic constants. In: François D (ed) Structural components. Wiley, Hoboken, pp 41–71CrossRefGoogle Scholar
  20. Gibson LT, Ashby MF (1988) Cellular solids: structures and properties. Penguin, LondonzbMATHGoogle Scholar
  21. Gourgues S, Lorenzon A-F (2007) Application of backscatter diffraction to the study of phase transformations. Int MaterRev 128:52–65Google Scholar
  22. Grediac M, Hild F (2011) Mesures de champs et identification en mécanique des solides. Hermes Science and Lavoisier, ParisGoogle Scholar
  23. Gregson PJ, Dinsdale K, Harris SJ, Noble B (1987) Evolution of microstructure in Al-Li-Zn-Mg-Cu alloys. In: Buschow KHJ (ed). Mater Sci Technol 3:7–13Google Scholar
  24. Haque MA, Saif MTA (2001) In situ tensile testing of nanoscale specimens in SEM and TEM. Exp Mech 42:123CrossRefGoogle Scholar
  25. Hernandez-Castillo LE, Rupin N, Boldetti C, Pinna C, Bornert M (2006) Evaluation of local strain fields in hot worked stainless steel. Photomechanics Clermond-Ferrand, ParisGoogle Scholar
  26. Hertz H (1896) Miscellaneous papers. Jones and Schott, LondonzbMATHGoogle Scholar
  27. Hill R (1950) The mathematical theory of plasticity. Clarendon Press, OxfordzbMATHGoogle Scholar
  28. Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. JMech Phys Solids 11:357–372ADSzbMATHCrossRefGoogle Scholar
  29. Hochepied JF, Dynis F, Berger MH, Dessombz A, Sayir A (2011) to be submittedGoogle Scholar
  30. Hutchinson JW, Obrecht H (1977) Tensile instabilities in strain rate dependent materials. In: Fracture 1977 1 (ICF4), Waterloo, pp 101–116Google Scholar
  31. ISO (1975) Metals rotating bar bending fatigue testing. ISO 1143Google Scholar
  32. ISO (1979) Hard metals compression test. ISO 4506Google Scholar
  33. ISO (1989) Steel conversion of hardness values to tensile strength values. ISO/TR 10108:1989Google Scholar
  34. ISO (1997) Steel and steel products location and preparation of samples and test pieces for mechanical testing. ISO 377:1997Google Scholar
  35. ISO (2000a) Metallic materials tensile testing at low temperature. ISO 15579:2000Google Scholar
  36. ISO (2000b) Steel Charpy V-notch pendulum impact test instrumented test method. ISO 14556:2000Google Scholar
  37. ISO (2002a) Metallic materials instrumented indentation test for hardness and materials parameters Part 1 test method. ISO 14577–1:2002Google Scholar
  38. ISO (2002b) Metallic materials unified method of test for the determination of quasistatic fracture toughness. ISO 12135:2002Google Scholar
  39. ISO (2002c) Metallic materials fatigue testing fatigue crack growth method. ISO 12108:2002Google Scholar
  40. ISO (2003) Metallic materials fatigue testing axial-strain-controlled method. ISO 12106Google Scholar
  41. ISO (2004) Metallic materials tensile testing in liquid helium. ISO 19819Google Scholar
  42. ISO (2005a) Metallic materials Bend test. ISO 7438Google Scholar
  43. ISO (2005b) Metallic materials Brinell hardness test Part 1 Test method. ISO 6506–1Google Scholar
  44. ISO (2005c) Metallic materials Rockwell hardness test Part 1 Test method (scales A B C D E F G H K N T). ISO 6508–1Google Scholar
  45. ISO (2005d) Metallic materials vickers hardness test Part 1 test method. ISO 6507–1Google Scholar
  46. ISO (2005e) Metallic materials determination of plane strain fracture toughness. ISO 12737Google Scholar
  47. ISO (2006) Metallic materials fatigue testing axial force-controlled method. ISO 1099Google Scholar
  48. ISO (2009a) Metallic materials Tensile testing Part 1 method of test at room temperature. ISO 6892–1Google Scholar
  49. ISO (2009b) Metallic materials tensile testing part 2 method of test at elevated temperature. ISO 6892–2Google Scholar
  50. ISO (2009 c) Metallic materials Charpy pendulum impact test Part 1 test method. ISO 148–1Google Scholar
  51. ISO (2009d) Metallic materials uniaxial creep testing in tension Method of test. ISO 204Google Scholar
  52. Lankford WT, Snyder SC, Bausher J (1950) A New criteria for predicting the press performance of deep drawing sheets. Trans ASM 42:1197–1205Google Scholar
  53. Lieurade H-P, Degallaix S, Degallaix G, Gauthier J-P (2008) Fatigue tests. In: François D (ed) Structural components. Wiley, Hoboken, pp 125–189CrossRefGoogle Scholar
  54. Miller MK (2000) Atom probe tomography: analysis at the atomic level. Kluwer Academic Plenum Pub, New YorkCrossRefGoogle Scholar
  55. Miller MK (2001) Contribution of atom probe tomography to the understanding of nickel-based superalloys. Micron 32:757–764CrossRefGoogle Scholar
  56. Motoyashiki Y, Brückner-Foigt A, Sugeta A (2007) Investigation of a small crack behaviour under cyclic loading in a dual phase steel with an FIB tomography technique. Fatigue Fract Eng Mat Struct 30:556–564CrossRefGoogle Scholar
  57. Nanga S (2008) Comportement et tranformation martensitique de deux aciers inoxydables austénitiques: effet de la temperature, de la vitesse et du chargement. Phd thesis, Mines ParistechGoogle Scholar
  58. Pinna C, Bornert M, Beynon JH, Sellars CM (2000) Experimental investigation and micro-mechanical modelling of the hot deformation of duplex stainless steels. In: Mathematical modeling in metal processing and manufacturing proceedings of the 39th conferenceGoogle Scholar
  59. Polak J, Man J, Obrtlik K (2005) Atomic force microscopy study of the early fatigue damage. Mater Sci Forum 482:45–50CrossRefGoogle Scholar
  60. Pommier S (2008) Hardness tests. In: François D (ed) Structural components. Wiley, Hoboken, pp 89–121CrossRefGoogle Scholar
  61. Reimer I, Kohl H (2008) Transmission electron microscopy. Physics and image formation. Springer, BerlinGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Dominique François
    • 1
  • André Pineau
    • 2
    • 3
  • André Zaoui
    • 3
    • 4
  1. 1.École Centrale de ParisParisFrance
  2. 2.École des Mines de Paris ParisTech Centre des Matériaux UMR CNRSEvry CedexFrance
  3. 3.Academy of EngineeringParisFrance
  4. 4.Académie des SciencesParisFrance

Personalised recommendations