Advertisement

Atmospheric elements deposition and evaluation of the anthropogenic part; the AAEF concept

  • Mickaël Catinon
  • Sophie Ayrault
  • Omar Boudouma
  • Juliette Asta
  • Michel Tissut
  • Patrick Ravanel
Conference paper
Part of the Alliance for Global Sustainability Bookseries book series (AGSB, volume 19)

Abstract

The atmospheric deposition on tree trunks is commonly used for evaluating air contamination on a large time scale. However, the deposits are mostly composed of organic matter (generally more than 80 %) and of minerals of geogenic origin. From the elemental composition of the whole deposit, measured by ICP-MS, a calculation was conceived which allows to separate the amounts of elements corresponding to organic matter, to geogenic compounds and, finally, to anthropogenic minerals. For this purpose, the weight of organic matter was obtained through incineration at 550°C. The elements composition of organic matter was deduced from plant composition. The weight of geogenic compounds was evaluated from the Si, Al content. The formula of geogenic elemental composition took into account the composition of the local soil. This calculation was carried out on four different situations showing the contribution of the main anthropic atmospheric contaminants (Sb, Cd, Sn, Pb, Cu, V, Zn, W, Cr, Ni, Co, As).

Keywords

Biological Trace Element Research Tree Bark Bark Tissue Superficial Deposit Bark Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Laaksovirta, K., Olkkonen, H., Alakuijala, P., 1976. Observations on the lead content of lichen and bark adjacent to a highway in Southern Finland. Environ. Pollut. 11, 247–255.CrossRefGoogle Scholar
  2. 2.
    Lötschert, W. and Köhm, H.J., 1978. Characteristics of tree bark as an indicator in high immission areas. II. Contents of heavy metals. Oecologia 37, 121–132.Google Scholar
  3. 3.
    Pacheco, A.M.G., Freitas, M.C., Barros, L.I.C., Figueira, R., 2001. Investigating tree bark as an air-pollution biomonitor by means of neutron activation analysis. Journ. of Radioanal. Nucl. Chem. 249, 327–331.CrossRefGoogle Scholar
  4. 4.
    Suzuki, K., 2006. Characterisation of airborne particulates and associated trace metal deposited on tree bark by ICP-OES, ICP-MS, SEM-EDX and laser ablation ICP-MS. Atmos. Environ. 40, 2626–2634.CrossRefGoogle Scholar
  5. 5.
    Tye, A.M., Hodgkinson, E.S. and Rawlins, B.G., 2006. Microscopic and chemical studies of metal particulates in tree bark and attic dust: evidence for historical atmospheric smelter emissions, Humberside, UK. Journ. of Environ. Monit. 8, 904–912.CrossRefGoogle Scholar
  6. 6.
    Berlizov, A.N., Blum, O.B., Filby, R.H., Malyuk, I.A., Tryshyn, V.V., 2007. Testing applicability of black poplar (Populus nigra L.) bark to heavy metal air pollution monitoring in urban and industrial regions. Sci. Total Environ. 372, 693–706.CrossRefGoogle Scholar
  7. 7.
    Bellis, D.J, Satake, K., Nodal, M., Nishimura, N., McLeod, C.W., 2002. Evaluation of the historical records of lead pollution in the annual growth rings and bark pockets of a 250-year-old Quercus crispula in Nikko, Japan. Sci. Total Environ. 295, 91–100.CrossRefGoogle Scholar
  8. 8.
    Catinon, M., Ayrault, S., Clocchiatti, R., Boudouma, O., Asta, J., Tissut, M., Ravanel, P., 2009. The anthropogenic atmospheric elements fraction: a new interpretation of elemental deposits on tree barks. Atmos. Environ. 43, 1124–1130.CrossRefGoogle Scholar
  9. 9.
    Freystein, K., Salisch, M., Reisser, W., 2007. Algal biofilms on tree bark to monitor airborne pollutants. Information: 5th International Symposiium Biology and Taxonomy of Green Algae. Biologia 63, 866–872.CrossRefGoogle Scholar
  10. 10.
    Holloway; P.J., 1972. Composition of suberin from corks of quercus-suber L and betula-pendula roth. Chemistry and physics of lipids 9, 158–168.CrossRefGoogle Scholar
  11. 11.
    Catinon, M., Ayrault, S., Daudin, L., Sevin, L., Asta, J., Tissut, M., Ravanel, P., 2008. Atmospheric inorganic contaminants and their distribution inside stem tissues of Fraxinus excelsior L. Atmos. Environ. 42, 1223–1238.CrossRefGoogle Scholar
  12. 12.
    Saarela, K.-E., Harju, L., Rajander, J., Lill, J.-O., Heselius, S.-J., Lindroos, A., Mattson, K., 2005. Elemental analysis of pine bark and wood in an environmental study. Sci. Total Environ. 342, 231–241.Google Scholar
  13. 13.
    Reimann, C., Ottesen, R.T., Andersson, M., Arnoldussen, A., Koller, F., Englmaier, P., 2008. Element levels in birch and spruce wood ashes - green energy? Sci. Total Environ. 393, 191–197.CrossRefGoogle Scholar
  14. 14.
    Ayrault, S., Bonhomme, P., Carrot, F., Amblard, G., Sciarretta, M.D., Galsomiès, L., 2001. Multianalysis of trace elements in mosses with inductively coupled plasma-mass spectrometry. Biological Trace Element Research 79, 177–184.CrossRefGoogle Scholar
  15. 15.
    Bargagli, R., 1998a. Higher plant as biomonitors of airborn trace elements. In Trace Elements in Terrestrial Plants: an Ecophysiological Approach to Biomonitoring and Biorecovery. Ed. R. Bargagli. pp. 238–262. Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
  16. 16.
    Markert, B. and Weckert, V., 1993. Time - and - site integrated long-term biomonitoring of chemicals by means of mosses. Toxicological and Environmental Chemistry 40, 43–56.CrossRefGoogle Scholar
  17. 17.
    Taylor, S.R., McLennan, S.M., 1985. The geochemical evolution of the continental crust. Reviews of Geophysics 33, 241–65.CrossRefGoogle Scholar
  18. 18.
    Esser, B.K., and Turekian, K.K., 1993. The Osmium isotopic composition of the continental crust. Geochimica Cosmochimica Acta 57, 3093–3104.CrossRefGoogle Scholar
  19. 19.
    Jochum, K.P., Hofmann, A.W., Seufert, H.M., 1993. Tin in mantle-derived rocks: constraints on Earth evolution. Geochimica Cosmochimica Acta 57, 3585–3595.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Mickaël Catinon
    • 1
  • Sophie Ayrault
    • 2
  • Omar Boudouma
    • 3
  • Juliette Asta
    • 1
  • Michel Tissut
    • 1
  • Patrick Ravanel
    • 1
  1. 1.Laboratoire LECAUMR 5553, Equipe Perturbations Environnementales et XénobiotiquesGrenobleFrance
  2. 2.Laboratoire des Sciences du Climat et de l’EnvironnementUMR 8212, CEA-CNRS-UVSQ/IPSLGif-sur-YvetteFrance
  3. 3.Service du MEB, UFR928Université Pierre et Marie CurieParisVIFrance

Personalised recommendations