Sensors for Active Noise Control

  • Thomas KletschkowskiEmail author
Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA, volume 56)


In order to establish an adaptive control approach, it is necessary to collect information about the systems state. The most common way of monitoring the state of interior noise fields is based on the observation of the acoustic pressure. This field variable is detected by microphones. Vectorial field variables such as the sound intensity can be approximated by sound pressure measurements, using two (or more) microphones. However, in some applications it is also useful to obtain a non-acoustic (reference) signal such as the acceleration of a vibrating boundary. This is particularly true, if a signal must not be altered by acoustical sources. Therefore, the upcoming chapter contains an introduction into both acoustical and structural sensing for active noise control. It is however limited to the description of condenser microphones, microphone based sound intensity probes, and inertial sensors, because (from the viewpoint of the author) these transducer types are of most practical importance. The equations of motion will be derived from simplified electro-mechanical transducer models. The particular transducer behavior is discussed in frequency domain. More details on acoustic transducers can be found in (Harris in Handbook of noise control, McGraw-Hill, New York, 1975), (Havelock et al. in Handbook of signal processing in acoustics, vol 2, Springer, New York, 2008b), (Heckl and Nüller in Taschenbuch der Technischen Akustik, Springer, Berlin, 1995), (Möser in Technische Akustik, Springer, Berlin, 2005), (Möser in Messtechnik der Akustik, Springer, Heidelberg, 2010), (Zwicker and Zollner in Elektroakustik, Springer, Berlin, 1984), (B&K in Microphone handbook, vol. 1: theory, Bruel & Kjaer, Nærum, Cited 10 May 2010, 1996) and also in (DIN EN 60268-4 in Elektroakustische Geräte. Teil 4: Mikrofone (IEC 60268-4:2004); Deutsche Fassung EN 60268-4:2004, DIN Deutsches Institut für Normung e.V., Germany, 2004). The fundamentals of sound intensity measurement are described in (Fahy in Sound intensity, Elsevier, London, 1989). Structural sensors are discussed in (Cremer et al. in Structure-borne sound, Springer, Berlin, 1995), (Fahy and Gardonio in Sound and structural vibration, Amsterdam, Elsevier, 2007) and (Havelock et al. in Handbook of signal processing in acoustics, vol 2, Springer, New York, 2008b).


Output Voltage Sound Pressure Acoustic Pressure Sound Intensity True Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Baker S (1955) An acoustic intensity meter. J Acoust Soc Am 27(2):269–273 CrossRefGoogle Scholar
  2. B&K (1996) Microphone handbook, vol 1: theory. Brüel & Kjaer, Nærum Cited 10 May 2010 Google Scholar
  3. Cremer L, Heckl M, Petersson BAT (1995) Structure-borne sound. Springer, Berlin Google Scholar
  4. Crocker MJ, Arenas JP (2003) Fundamentals of direct measurement of sound intensity an practical applications. Acoust Phys 49(2):199–214 CrossRefGoogle Scholar
  5. DIN EN 60268-4 (2004) Elektroakustische Geräte. Teil 4: Mikrofone (IEC 602684:2004); Deutsche Fassung EN 60268-4:2004. DIN Deutsches Institut für Normung e.V., Germany Google Scholar
  6. Fahy F (1989) Sound intensity. Elsevier, London Google Scholar
  7. Fahy F, Gardonio P (2007) Sound and structural vibration. Elsevier, Amsterdam Google Scholar
  8. Gade S (1982) Sound intensity (theory). Technical Review 3, Brüel & Kjaer, 3–39 Google Scholar
  9. Hamann M (1980) Ein Beitrag zur Realisierung eines Schallintensitätsmessverfahrens. Dissertation, University of Hannover Google Scholar
  10. Harris CM (1975) Handbook of noise control. McGraw-Hill, New York Google Scholar
  11. Havelock D, Kuwano S, Vorländer M (2008b) Handbook of signal processing in acoustics, vol 2. Springer, New York CrossRefGoogle Scholar
  12. Heckl M, Müller H (1995) Taschenbuch der Technischen Akustik. Springer, Berlin Google Scholar
  13. Jacobsen F, de Bree HE (2005) A comparison of two different sound intensity measurement principles. J Acoust Soc Am 188(3):1510–1517 CrossRefGoogle Scholar
  14. Microflown (2009) Datasheet ultimate sound probe. Microflown technologies. Cited 07 Sept 2009
  15. Möser M (2005) Technische Akustik. Springer, Berlin Google Scholar
  16. Möser M (2010) Messtechnik der Akustik. Springer, Heidelberg CrossRefGoogle Scholar
  17. Zwicker E, Zollner M (1984) Elektroakustik. Springer, Berlin Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, MechatronicsHelmut-Schmidt-University/University of the Federal Armed Forces HamburgHamburgGermany

Personalised recommendations