A Sound Intensity Probe with Active Free Field

  • Thomas KletschkowskiEmail author
Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA, volume 56)


To avoid the time and cost consuming process of realizing artificial free field conditions by introducing passive damping to the interior (which in addition changes the global characteristic of the investigated enclosure) or the need of sophisticated numerical models required to apply inverse noise source localization techniques such as the IFEM, compare Sect.  7.2 and Chap.  13, a novel sound intensity probe with an active free field (SIAF) was proposed in (Sachau et al. in Schallintensitätsdetektor sowie Verfahren zum Messen der Schallintensität. Patent. DE102004009644A1 22.09.2005, 2005a). This chapter reports on the application of the design methodology for ANC-systems proposed in Chap.  8 to the SIAF design process in which a first specification of the novel sound intensity probe was compiled in two successive design steps. The chapter also includes comments on the functional testing of the first SIAF realization. These experiments were especially focused on free field calibration considering the sound intensity measurements errors discussed in Sect.  4.2.2.


Free Field Sound Field Sound Intensity Acoustic Absorption Field Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Crocker MJ, Arenas JP (2003) Fundamentals of direct measurement of sound intensity an practical applications. Acoust Phys 49(2):199–214 CrossRefGoogle Scholar
  2. DIN 18041 (2004) Hörsamkeit in kleinen bis mittelgroßen Räumen. Deutsche Fassung DIN 18041. DIN Deutsches Institut für Normung e.V., Germany Google Scholar
  3. EN ISO 10534-2 (2001) Akustik—Bestimmung des Schallabsorptionsgrades und der Impedanz in Impedanzrohren Teil 2: Verfahren mit Übertragungsfunktion (ISO 10534-2:1998). Deutsche Fassung EN ISO 10534-2:2001. DIN Deutsches Institut für Normung e.V., Germany Google Scholar
  4. Freienstein H, Guicking D (1996) Experimentelle Untersuchung von linearen Lautsprecheranordnungen als aktive Absorber in einem Kanal. In: Proc of DAGA 96, Bonn, Germany, pp 112–113 Google Scholar
  5. Gade S (1982) Sound intensity (theory). Technical Review 3, Brüel & Kjaer, 3–39 Google Scholar
  6. Guicking D, Karcher K (1984) Active impedance control for one-dimensional sound. J Vib Acoust Stress Reliab Des 106:393–396 Google Scholar
  7. Kletschkowski T, Sachau D (2007b) Noise source identification using a sound intensity probe with active free-field. In: Proc of 8th conference on active noise and vibration control methods, Krakow-Krasiczyn, Poland, June 11–14 Google Scholar
  8. Kletschkowski T, Sachau D (2008) Design and calibration test of an active sound intensity probe. Adv Acoust Vib 2008, Article ID:574806 Google Scholar
  9. Sachau D, Drenckhan J, Schäfer I (2005a) Schallintensitätsdetektor sowie Verfahren zum Messen der Schallintensität. Patent. DE102004009644A1 22.09.2005 Google Scholar
  10. Utsumi M (1985) Reduction of noise transmission in a duct by termination impedance control of a sidebranch resonator. J Vib Acoust 123:289–296 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, MechatronicsHelmut-Schmidt-University/University of the Federal Armed Forces HamburgHamburgGermany

Personalised recommendations