Combining Cryo-EM and X-ray Crystallography to Study Membrane Protein Structure and Function

Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

Membrane proteins perform a wide range of essential functions in all cells of all living organisms, ranging from the sensing, processing and propagation of extrinsic signals, passive or active transport of ions and solutes, creating or utilizing a membrane potential, to the import or secretion of entire proteins. In spite of intense, and increasingly successful efforts in determining membrane protein structures, they still present a formidable challenge in structural biology.

Keywords

Membrane Protein Complex Membrane Protein Structure Electron Crystallography Study Membrane Protein Contrast Electron Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Al-Amoudi A, Díez DC, Betts MJ, Frangakis AS (2007) The molecular architecture of ­cadherins in native epidermal desmosomes. Nature 450:832–837CrossRefADSGoogle Scholar
  2. 2.
    Appel M, Hizlan D, Vinothkumar KR, Ziegler C, Kühlbrandt W (2009) Conformations of NhaA, the Na+/H+ exchanger from Escherichia coli, in the pH- activated and ion-translocating states. J Mol Biol 388:659–672CrossRefGoogle Scholar
  3. 3.
    Danev R, Nagayama K (2008) Single particle analysis based on Zernike phase contrast transmission electron microscopy. J Struct Biol 161:211–218CrossRefGoogle Scholar
  4. 4.
    Daum B, Nicastro D, Austin J II, McIntosh JR, Kühlbrandt W (2010) Arrangement of photosystem-II and ATP synthase in chloroplast membranes of spinach and pea. Plant Cell 22:1299–1312CrossRefGoogle Scholar
  5. 5.
    Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1984) X-ray structure analysis of a membrane protein complex electron-density map 3  Å resolution and a model of the chromophores of the photosynthetic reaction centre from Rhodopseudomonas viridis. J Mol Biol 180:385–398CrossRefGoogle Scholar
  6. 6.
    Efremov RG, Baradaran R, Sazanov LA (2010) The architecture of respiratory complex I. Nature 465: 441–445, 27 May 2010, doi: 10.1038/nature09066
  7. 7.
    Gipson P, Mills D, Wouts R, Grininger M, Vonck J, Kühlbrandt W (2010) Direct structural insight into the substrate-shuttling mechanism of yeast fatty acid synthase by electron cryomicroscopy. Proc Natl Acad Sci 107:9164–9169CrossRefADSGoogle Scholar
  8. 8.
    Goswami P, Paulino C, Hizlan D, Vonck J, Yildiz Ö, Kühlbrandt W (2011) Structure of the archaeal Na+/H+ antiporter NhaP1 and functional role of transmembrane helix 1. EMBO J 30:439–449CrossRefADSGoogle Scholar
  9. 9.
    Grigorieff N, Ceska TA, Downing KH, Baldwin JM, Henderson R (1996) Electron-crystallographic refinement of the structure of bacteriorhodopsin. J Mol Biol 259:393–421CrossRefGoogle Scholar
  10. 10.
    Hite RK, Li Z, Walz T (2010) Principles of membrane protein interactions with annular lipids deduced from aquaporin-0 2D crystals. EMBO J 29:1652–1658CrossRefGoogle Scholar
  11. 11.
    Hunte C, Screpanti E, Venturi M, Rimon A, Padan E, Michel H (2005) Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435:1197–1202CrossRefADSGoogle Scholar
  12. 12.
    Jiang W, Baker ML, Jakana J, Weigele PR, King J, Chiu W (2008) Backbone structure of the infectious e15 virus capsid revealed by electron cryomicroscopy. Nature 451:1130–1135CrossRefADSGoogle Scholar
  13. 13.
    Kühlbrandt W, Wang DN, Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367:614–621CrossRefADSGoogle Scholar
  14. 14.
    Majorovits E, Barton B, Schultheiss K, Pérez-Willard F, Gerthsen D, Schröder RR (2007) Optimizing phase contrast in transmission electron microscopy with an electrostatic (Boersch) phase plate. Ultramicroscopy 107:213–226CrossRefGoogle Scholar
  15. 15.
    McMullan G, Faruqi AR, Henderson R, Guerrini N, Turchetta R, Jacobs A, van Hoften G (2009) Experimental observation of the improvement in MTF from backthinning a CMOS direct electron detector. Ultramicroscopy 109:1144–1147CrossRefGoogle Scholar
  16. 16.
    Model K, Meisinger C, Kühlbrandt W (2008) Cryo-electron microscopy structure of a yeast mitochondrial preprotein translocase. J Mol Biol 383:1049–1057CrossRefGoogle Scholar
  17. 17.
    Nield J, Barber J (2006) Refinement of the structural model for the Photosystem II supercomplex of higher plants. Biochim Biophys Acta 1757:353–361CrossRefGoogle Scholar
  18. 18.
    Rubinstein JL, Walker JE, Henderson R (2003) Structure of the mitochondrial ATP synthase by electron cryomicroscopy. EMBO J 22:6182–6192CrossRefGoogle Scholar
  19. 19.
    Schäfer E, Dencher NA, Vonck J, Parcej DN (2007) Three-dimensional structure of the respiratory chain supercomplex I1III2IV1 from bovine heart mitochondria. Biochemistry 46:12579–12585CrossRefGoogle Scholar
  20. 20.
    Schulze S, Köster S, Geldmacher U, Terwisscha van Scheltinga AC, Kühlbrandt W (2010) Structural basis of Na+-independent and cooperative substrate/product antiport in CaiT. Nature 467:233–236CrossRefADSGoogle Scholar
  21. 21.
    Strauss M, Hofhaus G, Schröder RR, Kühlbrandt W (2008) Dimer ribbons of ATP synthase shape the inner mitochondrial membrane. EMBO J 27:1154–1160CrossRefGoogle Scholar
  22. 22.
    Vinothkumar KR, Smits SHJ, Kühlbrandt W (2005) pH-induced structural change in a sodium/proton antiporter from Methanococcus jannaschii. EMBO J 24:2720–2729CrossRefGoogle Scholar
  23. 23.
    Vonck J, Pisa KY, Morgner N, Brutschy B, Müller V (2009) Three-dimensional structure of A1A0 ATP synthase from the hyperthermophilic archaeon Pyrococcus furiosus by electron microscopy. J Biol Chem 284:10110–10119CrossRefGoogle Scholar
  24. 24.
    Williams KA (2000) Three-dimensional structure of the ion-coupled transport protein NhaA. Nature 403:112–115CrossRefADSGoogle Scholar
  25. 25.
    Zhang X, Jin L, Fang Q, Hui WH, Zhou ZH (2010) 3.3  Å cryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry. Cell 141:472–482CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Max-Planck-Institute of BiophysicsFrankfurt am MainGermany

Personalised recommendations