RuvBL1 and RuvBL2 and Their Complex Proteins Implicated in Many Cellular Pathways

  • Sabine Gorynia
  • Tiago M. Bandeiras
  • Pedro M. Matias
  • Filipa G. Pinho
  • Colin E. McVey
  • Peter Donner
  • Maria Arménia Carrondo
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)


RuvBL1 and its homolog RuvBL2 belong to the AAA+ family of ATPases and play important roles in chromatin remodeling, in transcriptional regulation, in DNA repair and in the c-Myc and Wnt signaling pathways. Proteins involved in these pathways are often mutated in human cancers. Both RuvBL proteins form a complex and act alone or together in diverse cellular processes. The three-dimensional structures of human RuvBL1 refined using diffraction data to 2.2 Å resolution and of the human RuvBL1/RuvBL2 complex with a truncated domain II at 3 Å resolution are presented. The dodecameric RuvBL1/RuvBL2 complex structure differs from previously described models. It consists of two heterohexameric rings with alternating RuvBL1 and RuvBL2 monomers that interact with each other via domain II. ATPase and helicase activities of RuvBL1 and RuvBL2 were also tested. Interestingly, truncation of domain II resulted not only in a substantial increase of ATP consumption by the RuvBL proteins, but also in stimulation of helicase activity, which was not observed with the full-length proteins.


AAA+ proteins Helicase X-ray crystallography Chromatin remodeling Transcriptional regulation 


  1. 1.
    Bauer A, Huber O, Kemler R (1998) Pontin52, an interaction partner of beta-catenin, binds to the TATA box binding protein. Proc Natl Acad Sci USA 95(25):14787–14792CrossRefADSGoogle Scholar
  2. 2.
    Neuwald AF et al (1999) AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9(1):27–43Google Scholar
  3. 3.
    Walker JE et al (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1(8):945–951Google Scholar
  4. 4.
    Feng Y, Lee N, Fearon ER (2003) TIP49 regulates beta-catenin-mediated neoplastic transformation and T-cell factor target gene induction via effects on chromatin remodeling. Cancer Res 63(24):8726–8734Google Scholar
  5. 5.
    Jonsson ZO et al (2004) Rvb1p/Rvb2p recruit Arp5p and assemble a functional Ino80 chromatin remodeling complex. Mol Cell 16(3):465–477CrossRefGoogle Scholar
  6. 6.
    Wood MA, McMahon SB, Cole MD (2000) An ATPase/helicase complex is an essential cofactor for oncogenic transformation by c-Myc. Mol Cell 5(2):321–330CrossRefGoogle Scholar
  7. 7.
    Putnam CD et al (2001) Structure and mechanism of the RuvB Holliday junction branch migration motor. J Mol Biol 311(2):297–310CrossRefMathSciNetGoogle Scholar
  8. 8.
    Yamada K et al (2001) Crystal structure of the Holliday junction migration motor protein RuvB from Thermus thermophilus HB8. Proc Natl Acad Sci USA 98(4):1442–1447CrossRefADSGoogle Scholar
  9. 9.
    Tsaneva IR, Muller B, West SC (1993) RuvA and RuvB proteins of Escherichia coli exhibit DNA helicase activity in vitro. Proc Natl Acad Sci USA 90(4):1315–1319CrossRefADSGoogle Scholar
  10. 10.
    Mezard C et al (1999) Escherichia coli RuvBL268S: a mutant RuvB protein that exhibits wild-type activities in vitro but confers a UV-sensitive ruv phenotype in vivo. Nucleic Acids Res 27(5):1275–1282CrossRefGoogle Scholar
  11. 11.
    Ikura T et al (2000) Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102(4):463–473CrossRefGoogle Scholar
  12. 12.
    Fuchs M et al (2001) The p400 complex is an essential E1A transformation target. Cell 106(3):297–307CrossRefGoogle Scholar
  13. 13.
    Samuelson AV et al (2005) p400 is required for E1A to promote apoptosis. J Biol Chem 280(23):21915–21923CrossRefGoogle Scholar
  14. 14.
    Jin J et al (2005) In and out: histone variant exchange in chromatin. Trends Biochem Sci 30(12):680–687CrossRefGoogle Scholar
  15. 15.
    Jonsson ZO et al (2001) Rvb1p and Rvb2p are essential components of a chromatin remodeling complex that regulates transcription of over 5% of yeast genes. J Biol Chem 276(19):16279–16288CrossRefGoogle Scholar
  16. 16.
    Shen X et al (2000) A chromatin remodelling complex involved in transcription and DNA processing. Nature 406(6795):541–544CrossRefADSGoogle Scholar
  17. 17.
    Kanemaki M et al (1997) Molecular cloning of a rat 49-kDa TBP-interacting protein (TIP49) that is highly homologous to the bacterial RuvB. Biochem Biophys Res Commun 235(1):64–68CrossRefGoogle Scholar
  18. 18.
    Kanemaki M et al (1999) TIP49b, a new RuvB-like DNA helicase, is included in a complex together with another RuvB-like DNA helicase, TIP49a. J Biol Chem 274(32):22437–22444CrossRefGoogle Scholar
  19. 19.
    Qiu XB et al (1998) An eukaryotic RuvB-like protein (RUVBL1) essential for growth. J Biol Chem 273(43):27786–27793CrossRefGoogle Scholar
  20. 20.
    Bauer A et al (2000) Pontin52 and reptin52 function as antagonistic regulators of beta-catenin signalling activity. EMBO J 19(22):6121–6130CrossRefGoogle Scholar
  21. 21.
    Dugan KA, Wood MA, Cole MD (2002) TIP49, but not TRRAP, modulates c-Myc and E2F1 dependent apoptosis. Oncogene 21(38):5835–5843CrossRefGoogle Scholar
  22. 22.
    Cho SG et al (2001) TIP49b, a regulator of activating transcription factor 2 response to stress and DNA damage. Mol Cell Biol 21(24):8398–8413CrossRefGoogle Scholar
  23. 23.
    Cole MD (1986) The myc oncogene: its role in transformation and differentiation. Annu Rev Genet 20:361–384CrossRefGoogle Scholar
  24. 24.
    Evan GI et al (1992) Induction of apoptosis in fibroblasts by c-myc protein. Cell 69(1):119–128CrossRefGoogle Scholar
  25. 25.
    Li LH et al (1994) c-Myc represses transcription in vivo by a novel mechanism dependent on the initiator element and Myc box II. EMBO J 13(17):4070–4079Google Scholar
  26. 26.
    Penn LJ et al (1990) Negative autoregulation of c-myc transcription. EMBO J 9(4):1113–1121MathSciNetGoogle Scholar
  27. 27.
    Stone J et al (1987) Definition of regions in human c-myc that are involved in transformation and nuclear localization. Mol Cell Biol 7(5):1697–1709ADSGoogle Scholar
  28. 28.
    Matias PM et al (2006) Crystal structure of the human AAA+ protein RuvBL1. J Biol Chem 281(50):38918–38929CrossRefGoogle Scholar
  29. 29.
    Gorynia S et al (2008) Cloning, expression, purification, crystallization and preliminary X-ray analysis of the human RuvBL1-RuvBL2 complex. Acta Crystallogr Sect F Struct Biol Cryst Commun 64(Pt 9):840–846CrossRefGoogle Scholar
  30. 30.
    Gorynia S et al (2010) Structural and functional insights into the dodecameric molecular machine – The RuvBL1/RuvBL2 complex. J Struct Biol 176 (2011), 279–291Google Scholar
  31. 31.
    Puri T et al (2007) Dodecameric structure and ATPase activity of the human TIP48/TIP49 complex. J Mol Biol 366(1):179–192CrossRefGoogle Scholar
  32. 32.
    Torreira E et al (2008) Architecture of the pontin/reptin complex, essential in the assembly of several macromolecular complexes. Structure 16(10):1511–1520CrossRefGoogle Scholar
  33. 33.
    Gribun A et al (2008) Yeast Rvb1 and Rvb2 are ATP-dependent DNA helicases that form a heterohexameric complex. J Mol Biol 376(5):1320–1333CrossRefGoogle Scholar
  34. 34.
    Diop SB et al (2008) Reptin and pontin function antagonistically with PcG and TrxG complexes to mediate Hox gene control. EMBO Rep 9(3):260–266CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Sabine Gorynia
    • 1
    • 2
    • 3
  • Tiago M. Bandeiras
    • 4
  • Pedro M. Matias
    • 1
  • Filipa G. Pinho
    • 4
  • Colin E. McVey
    • 1
  • Peter Donner
    • 1
  • Maria Arménia Carrondo
    • 1
  1. 1.Instituto de Tecnologia Química e BiológicaUniversidade Nova de LisboaOeirasPortugal
  2. 2.Lead Discovery Berlin – Protein SupplyBayer Schering Pharma AGBerlinGermany
  3. 3.Department of Biological Chemistry, David Geffen School of MedicineUCLALos AngelesUSA
  4. 4.Instituto de Biologia Experimental e TecnológicaOeirasPortugal

Personalised recommendations