Cryoelectron Tomography or Doing Structural Biology In Situ

Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

Electron tomography enables the three-dimensional visualization of large and stochastically variable structures such as supramolecular assemblies, organelles or even cells. In conjunction with cryogenic techniques electron tomography avoids the artefacts that are notorious to conventional electron microscopy specimen preparation. At resolutions of a few (2–4) nanometers it provides unprecedented insights into the molecular organization of cellular landscapes and helps to bridge the divide that hitherto existed between molecular and cellular structural studies.

Keywords

Electron Dose Conventional Electron Microscopy Optimistic Tilt Cryoelectron Tomography Electron Microscopy Specimen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Leis A, Rockel B, Andrees L, Baumeister W (2009) Visualizing cells at the nanoscale. Trends Biochem Sci 34:60–70CrossRefGoogle Scholar
  2. 2.
    Lucic V, Förster F, Baumeister W (2005) Structural studies by electron tomography: from cells to molecules. Annu Rev Biochem 74:833–865CrossRefGoogle Scholar
  3. 3.
    Crowther RA, DeRosier DJ, Klug A (1970) The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc R Soc Lond A Math Phys Sci 317:319–340CrossRefADSGoogle Scholar
  4. 4.
    Mercogliano CP, DeRosier DJ (2006) Gold nanocluster formation using metallothionein: mass spectrometry and electron microscopy. J Mol Biol 355:211–223CrossRefGoogle Scholar
  5. 5.
    Frangakis AS, Böhm J, Förster F, Nickell S, Nicastro D, Typke D, Hegerl R, Baumeister W (2002) Identification of macromolecular complexes in cryoelectron tomograms of phantom cells. Proc Natl Acad Sci USA 99:14153–14158CrossRefADSGoogle Scholar
  6. 6.
    Medalia O, Weber I, Frangakis AS, Nicastro D, Gerisch G, Baumeister W (2002) Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298:1209–1213CrossRefADSGoogle Scholar
  7. 7.
    Nickell S, Kofler C, Leis A, Baumeister W (2006) A visual approach to proteomics. Nat Rev Mol Cell Biol 7:225–230CrossRefGoogle Scholar
  8. 8.
    Sartori A, Gatz R, Beck F, Rigort A, Baumeister W, Plitzko JM (2007) Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. J Struct Biol 160:135–145CrossRefGoogle Scholar
  9. 9.
    Beck M, Förster F, Ecke M, Plitzko J, Melchior F, Gerisch G, Baumeister W, Medalia O (2004) Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science 306:1387–1390CrossRefADSGoogle Scholar
  10. 10.
    Beck M, Lucic V, Förster F, Baumeister W, Medalia O (2007) Snapshots of nuclear pore complexes in action captured by cryoelectron tomography. Nature 449:611–615CrossRefADSGoogle Scholar
  11. 11.
    Medalia O, Beck M, Ecke M, Weber I, Neujahr R, Baumeister W, Gerisch G (2007) Organization of actin networks in intact filopodia. Curr Biol 17:79–84CrossRefGoogle Scholar
  12. 12.
    Brandt F, Etchells SA, Ortiz JO, Elcock AH, Hartl FU, Baumeister W (2009) The native 3D organization of bacterial polysomes. Cell 136:261–271CrossRefGoogle Scholar
  13. 13.
    Fernandez-Busnadiego R, Zuber B, Maurer UE, Cyrklaff M, Baumeister W, Lucic V (2010) Quantitative analysis of the native presynaptic cytomatrix by cryo-electron tomography. J Cell Biol 188:145–156CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Max-Planck-Institute of BiochemistryMartinsriedGermany

Personalised recommendations