Structural Dynamics of Picornaviral RdRP Complexes. Implications for the Design of Antivirals

  • Núria Verdaguer
  • Cristina Ferrer-Orta
  • Esteban Domingo
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)


Genome replication in picornavirus is catalyzed by a virally encoded RNA dependent RNA polymerase, termed 3D. These viruses also use a small protein primer, named VPg to initiate RNA replication. Polymerase 3D also catalyzes the covalent linkage of UMP to a N-terminal tyrosine on VPg. Seven different crystal structures of foot-and-mouth disease virus (FMDV) 3D catalytic complexes have enhanced our understanding of template and primer recognition, VPg uridylylation and rNTP binding and catalysis. In addition, the biochemical and structural analyses of six different FMDV 3D ribavirin resistant mutants provided evidences of three different mechanisms of resistance to this mutagenic nucleoside analogue. Such structural information is providing new insights into the fidelity of RNA replication, and for the design of antiviral compounds.


Picornavirus RNA-dependent RNA polymerase Replication fidelity Ribavirin 


  1. 1.
    Agudo R, Ferrer-Orta C, Arias A, de la Higuera I, Perales C, Pérez-Luque R, Verdaguer N, Domingo E (2010) A multi-step process of viral adaptation to a mutagenic nucleoside analogue by modulation of transition types leads to extinction-escape. PLoS Pathog. 2010 Aug 26; 6(8) pii: e1001072Google Scholar
  2. 2.
    Arias A, Arnold JJ, Sierra M, Smidansky ED, Domingo E, Cameron CE (2008) Determinants of RNA-dependent RNA polymerase (in)fidelity revealed by kinetic analysis of the polymerase encoded by a foot-and-mouth disease virus mutant with reduced sensitivity to ribavirin. J Virol 82:12346–12355CrossRefGoogle Scholar
  3. 3.
    Arnold JJ, Cameron CE (2000) Poliovirus RNA-dependent RNA polymerase (3D(pol)). Assembly of stable, elongation-competent complexes by using a symmetrical primer-template substrate (sym/sub). J Biol Chem 275:5329–5336CrossRefGoogle Scholar
  4. 4.
    Crotty S, Maag D, Arnold JJ, Zhong W, Lau JY, Hong Z, Andino R, Cameron CE (2000) The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen. Nat Med 6:1375–1379CrossRefGoogle Scholar
  5. 5.
    Crotty S, Cameron CE, Andino R (2001) RNA virus error catastrophe: direct molecular test by using ribavirin. Proc Natl Acad Sci USA 98:6895–6900CrossRefADSGoogle Scholar
  6. 6.
    De Francesco R, Migliaccio G (2005) Challenges and successes in developing new therapies for hepatitis C. Nature 436:953–960CrossRefADSGoogle Scholar
  7. 7.
    Domingo E Ed (2005) Virus entry into error catastrophe as a new antiviral strategy. Virus Res 107:115–228CrossRefGoogle Scholar
  8. 8.
    Domingo E, Parrish C, Holland JJE (2008) Origin and evolution of viruses, 2nd edn. Elsevier, OxfordGoogle Scholar
  9. 9.
    Felt JJ, Hoofnagle JH (2005) Mechanism of action of interferon and ribavirin in treatment of hepatitis C. Nature 436:967–972CrossRefADSGoogle Scholar
  10. 10.
    Ferrer-Orta C, Arias A, Perez-Luque R, Escarmis C, Domingo E, Verdaguer N (2004) Structure of foot-and-mouth disease virus RNA-dependent RNA polymerase and its complex with a template-primer RNA. J Biol Chem 279:47212–47221CrossRefGoogle Scholar
  11. 11.
    Ferrer-Orta C, Arias A, Agudo R, Perez-Luque R, Escarmis C, Domingo E, Verdaguer N (2006) The structure of a protein primer-polymerase complex in the initiation of genome replication. EMBO J 25:880–888CrossRefGoogle Scholar
  12. 12.
    Ferrer-Orta C, Arias A, Escarmis C, Verdaguer N (2006) A comparison of viral RNA-dependent RNA polymerases. Curr Opin Struct Biol 16:27–34CrossRefGoogle Scholar
  13. 13.
    Ferrer-Orta C, Arias A, Perez-Luque R, Escarmis C, Domingo E, Verdaguer N (2007) Sequential structures provide insights into the fidelity of RNA replication. Proc Natl Acad Sci USA 104:9463–9468CrossRefADSGoogle Scholar
  14. 14.
    Ferrer-Orta C, Agudo R, Domingo E, Verdaguer N (2009) Structural insights into replication initiation and elongation processes by the FMDV RNA-dependent RNA polymerase. Curr Opin Struct Biol 19:752–758CrossRefGoogle Scholar
  15. 15.
    Ferrer-Orta C, Sierra M, Agudo R, de la Higuera I, Arias A et al (2010) Structure of foot-and-mouth disease virus mutant polymerases with reduced sensitivity to ribavirin. J Virol 84:6188–6199CrossRefGoogle Scholar
  16. 16.
    Ng KK, Arnold JJ, Cameron CE (2008) Structure-function relationships among RNA-dependent RNA polymerases. Curr Top Microbiol Immunol 320:137–156CrossRefGoogle Scholar
  17. 17.
    Paul AV, Yin J, Mugavero J, Rieder E, Liu Y, Wimmer E (2003) A “slide-back” mechanism for the initiation of protein-primed RNA synthesis by the RNA polymerase of poliovirus. J Biol Chem 278:43951–43960CrossRefGoogle Scholar
  18. 18.
    Pfeiffer JK, Kirkegaard K (2003) A single mutation in poliovirus RNA-dependent RNA polymerase confers resistance to mutagenic nucleotide analogs via increased fidelity. Proc Natl Acad Sci USA 100:7289–7294CrossRefADSGoogle Scholar
  19. 19.
    Pfeiffer JK, Kirkegaard K (2005) Increased fidelity reduces poliovirus fitness and virulence under selective pressure in mice. PLoS Pathog 1:e11CrossRefGoogle Scholar
  20. 20.
    Sierra M, Airaksinen A, González-López C, Agudo R, Arias A, Domingo E (2007) Foot-and-mouth disease virus mutant with decreased sensitivity to ribavirin: implications for error catastrophe. J Virol 81:2012–2024CrossRefGoogle Scholar
  21. 21.
    Steitz TA, Steitz JA (1993) A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci USA 90:6498–6502CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Núria Verdaguer
    • 1
  • Cristina Ferrer-Orta
    • 1
  • Esteban Domingo
    • 2
  1. 1.Instituto de Biología Molecular de Barcelona CSIC, Parc Científic de BarcelonaBarcelonaSpain
  2. 2.Centro de Biología Molecular Severo Ochoa (CSIC-UAM), CantoblancoMadridSpain

Personalised recommendations