Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 1328 Accesses

Abstract

Long/large fatigue crack growth under constant amplitude loading can be considered in terms of the three regions shown in Fig. 6.1. In region I there is a threshold value, ΔKth, below which cracks do not propagate. Above this value the crack growth rate increases relatively rapidly with increasing ΔK. In region II there is a more or less linear log–log relation between da/dN and ΔK. In region III the crack growth rate curve rises rapidly towards final failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • P.J. Bania, L.R. Bidwell, J.A. Hall, D. Eylon, A.K. Chakrabarti, Fracture—microstructure relationships in titanium alloys, in Titanium and Titanium Alloys, Scientific and Technological Aspects, vol. 1, ed. by J.C. Williams, A.F. Belov (Plenum Press, New York), pp. 663–677

    Google Scholar 

  • K.S. Chan, Variability of large-crack fatigue-crack-growth thresholds in structural alloys. Metall. Mater. Trans. A 35A, 3721–3735 (2004)

    Article  Google Scholar 

  • H.L. Ewalds, R.J.H. Wanhill, Fracture Mechanics (Edward Arnold (Publishers) Ltd and Delftse Uitgevers Maatschappij b.v., London, and Delft, 1984), pp. 172–173

    Google Scholar 

  • D. Eylon, Faceted fracture in beta annealed titanium alloys. Metall. Trans. A 10A, 311–317 (1979)

    Google Scholar 

  • D. Eylon, P.J. Bania, Fatigue cracking characteristics of β-annealed large colony Ti-11 alloy. Metall. Trans. A 9A, 1273–1279 (1978)

    Google Scholar 

  • T.S. Gross, S. Bose, L. Zhong, Frictional effects on fatigue crack growth in β-annealed Ti-6Al-4V. Fatigue Fract. Eng. Mater. Struct. 11, 179–187 (1988)

    Article  Google Scholar 

  • M.D. Halliday, C.J. Beevers, Some aspects of fatigue crack closure in two contrasting titanium alloys. J. Testing Eval. 9, 195–201 (1981)

    Google Scholar 

  • M.A. Hicks, R.H. Jeal, C.J. Beevers, Slow fatigue crack growth and threshold behaviour in IMI 685. Fatigue Eng. Mater. Struct. 6, 51–65 (1983)

    Article  Google Scholar 

  • P.E. Irving, C.J. Beevers, Microstructural influences on fatigue crack growth in Ti-6Al-4V. Mater. Sci. Eng. 14, 229–238 (1974)

    Article  Google Scholar 

  • G. Lütjering, L. Wagner, Influence of texture on fatigue properties of titanium alloys, in Directional Properties of Materials, ed. by H.J. Bunge (DGM Informationsgesellschaft mbH, Oberursel, 1988), pp. 177–188

    Google Scholar 

  • K.S. Ravichandran, Near threshold fatigue crack growth behavior of a titanium alloy: Ti-6Al-4V. Acta Metall. et Mater. 39, 401–410 (1991)

    Article  Google Scholar 

  • K.S. Ravichandran, E.S. Dwarakadasa, Fatigue crack growth transitions in Ti-6Al-4V alloy. Scripta METALLURGICA 23, 1685–1690 (1989)

    Article  Google Scholar 

  • V.K. Saxena, G. Malakondaiah, Effect of heat treatment on fatigue crack growth in Ti-6Al-3.5Mo-1.9Zr-0.23Si alloy. Int. J. Fatigue 11, 423–428 (1989)

    Article  Google Scholar 

  • V.K. Saxena, V.M. Radhakrishnan, Effect of phase morphology on fatigue crack growth behavior of α-β titanium alloy—a crack closure rationale. Metall. Mater. Trans. A 29A, 245–261 (1998)

    Article  Google Scholar 

  • S. Suresh, Crack deflection: implications for the growth of long and short fatigue cracks. Metall. Trans. A 14A, 2375–2385 (1983)

    Google Scholar 

  • S. Suresh, Fatigue crack deflection and fracture surface contact: micromechanical models. Metall. Trans. A 16A, 249–259 (1985)

    Google Scholar 

  • S. Suresh, R.O. Ritchie, A geometrical model for fatigue crack closure induced by fracture surface morphology. Metall. Trans. A 13A, 1627–1631 (1982)

    Google Scholar 

  • L. Wagner, G. Lütjering, Microstructural influence on propagation behavior of short cracks in an (α + β) Ti alloy. Zeitschrift für Metallkunde 78, 369–375 (1987)

    Google Scholar 

  • S.-H. Wang, C. Müller, A study on the change of fatigue fracture mode in two titanium alloys. Fatigue Fract. Eng. Mater. Struct. 21, 1077–1087 (1998)

    Article  Google Scholar 

  • R.J.H. Wanhill, Material-based failure analysis of a helicopter rotor hub. Practical Fail. Anal. 3, 59–69 (2003)

    Google Scholar 

  • R.J.H. Wanhill, R. Galatolo, C.E.W. Looije, Fractographic and microstructural analysis of fatigue crack growth in a Ti-6Al-4V fan disc forging. Int. J. Fatigue 11, 407–416 (1989)

    Article  Google Scholar 

  • R.J.H. Wanhill, C.E.W. Looije, Fractographic and microstructural analysis of fatigue crack growth in Ti-6Al-4V fan disc forgings, in AGARD Engine Disc Cooperative Test Programme, AGARD Report 766 (Addendum), Advisory Group for Aerospace Research and Development, Neuilly-sur-Seine, France (1993), pp. 2-1–2-40

    Google Scholar 

  • G.R. Yoder, L.A. Cooley, T.W. Crooker, A micromechanistic interpretation of cyclic crack-growth behavior in a beta-annealed Ti-6Al-4V alloy, NRL Report 8048, (Naval Research Laboratory, Washington, 1976)

    Google Scholar 

  • G.R. Yoder, L.A. Cooley, T.W. Crooker, Enhancement of fatigue crack growth and fracture resistance in Ti-6Al-4V and Ti-6Al-6V–2Sn through microstructural modification. Trans. ASME, J. Eng. Mater. Technol. 99, 313–318 (1977a)

    Article  Google Scholar 

  • G.R. Yoder, L.A. Cooley, T.W. Crooker, Observations on microstructurally sensitive fatigue crack growth in a Widmanstätten Ti-6Al-4V alloy. Metall. Trans. A 8A, 1737–1743 (1977b)

    Google Scholar 

  • G.R. Yoder, L.A. Cooley, T.W. Crooker, Fatigue crack propagation resistance of beta-annealed Ti-6Al-4V alloys of differing interstitial oxygen contents. Metall. Trans. A 9A, 1413–1420 (1978)

    Google Scholar 

  • G.R. Yoder, L.A. Cooley, T.W. Crooker, 50-fold difference in region-II fatigue crack propagation resistance of titanium alloys: a grain size effect. Trans. ASME, J. Eng. Mater. Technol. 101, 86–90 (1979)

    Article  Google Scholar 

  • G.R. Yoder, L.A. Cooley, T.W. Crooker, Observations on the generality of the grain-size effect on fatigue crack growth in α + β titanium alloys, in Titanium ’80 Science and Technology, ed. by H. Kimura, O. Izumi (The Metallurgical Society of AIME, Warrendale, 1980), pp. 1865–1873

    Google Scholar 

  • G.R. Yoder, F.H. Froes, D. Eylon, Effect of microstructure, strength, and oxygen content on fatigue crack growth rate of Ti-4.5Al-5.0Mo-1.5Cr (CORONA 5). Metall. Trans. A 15A, 183–197 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russell Wanhill .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Wanhill, R., Barter, S. (2012). Long/Large Fatigue Crack Growth. In: Fatigue of Beta Processed and Beta Heat-treated Titanium Alloys. SpringerBriefs in Applied Sciences and Technology(). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2524-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2524-9_6

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2523-2

  • Online ISBN: 978-94-007-2524-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics