Fatigue Initiation Sites

  • Russell Wanhill
  • Simon Barter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


Figure 3.1 illustrates schematically the reported fatigue crack initiation sites for the three main microstructural categories of near-α and α–β alloys (Wells and Sullivan 1969; Stubbington and Bowen 1974; Eylon and Pierce 1976; Eylon and Hall 1977; Postans and Jeal 1977; Ruppen et al. 1979; Bania et al. 1982; Bolingbroke and King 1986; Wojcik et al. 1988; Dowson et al. 1992; Evans and Bache 1994; Demulsant and Mendez 1995; Lütjering et al. 1996; Wagner 1997; Hines and Lütjering 1999).


Fatigue Crack Titanium Nitride High Purity Material Titanium Sponge Progression Marking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. M.R. Bache, W.J. Evans, V. Randle, R.J. Wilson, Characterization of mechanical anisotropy in titanium alloys. Mater. Sci. Eng. A A257, 139–144 (1998)Google Scholar
  2. P.J. Bania, L.R. Bidwell, J.A. Hall, D. Eylon, A.K. Chakrabarti, Fracture—microstructure relationships in titanium alloys, in Titanium and Titanium Alloys, Scientific and Technological Aspects, vol. 1, ed. by J.C. Williams, A.F. Belov (Plenum Press, New York, 1982), pp. 663–677Google Scholar
  3. R.K. Bolingbroke, J.E. King, The growth of short fatigue cracks in titanium alloys IMI550 and IMI318, in Small Fatigue Cracks, ed. by R.O. Ritchie, J. Lankford (The Metallurgical Society, Inc., Warrendale, 1986), pp. 129–144Google Scholar
  4. J.G. Costa, R.E. Gonzalez, R.E. Guyotte, D.P. Salvano, T. Swift, R.J. Koenig, Titanium Rotating Components Review Team Report, United States of America Federal Aviation Administration, Aircraft Certification Service, Engine and Propeller Directorate (1990)Google Scholar
  5. X. Demulsant, J. Mendez, Microstructural effects on small fatigue crack initiation and growth in Ti6Al4V alloys. Fatigue Fract. Eng. Mater. Struct. 18, 1483–1497 (1995)CrossRefGoogle Scholar
  6. A.L. Dowson, A.C. Hollis, C.J. Beevers, The effect of the alpha-phase volume fraction and stress ratio on the fatigue crack growth characteristics of the near-alpha IMI 834 Ti alloy. Int. J. Fatigue 14, 262–270 (1992)CrossRefGoogle Scholar
  7. W.J. Evans, M.R. Bache, Dwell-sensitive fatigue under biaxial loads in the near-alpha titanium alloy IMI685. Int. J. Fatigue 16, 443–452 (1994)CrossRefGoogle Scholar
  8. D. Eylon, J.A. Hall, Fatigue behavior of beta processed titanium alloy IMI 685. Metall. Trans. A 8A, 981–990 (1977)Google Scholar
  9. D. Eylon, C.M. Pierce, Effect of microstructure on notch fatigue properties of Ti-6Al-4V. Metall. Trans. A 7A, 111–121 (1976)Google Scholar
  10. N.T. Goldsmith, Deep focus; a digital image processing technique to produce improved focal depth in light microscopy. Image Anal. Stereol. 19, 163–167 (2000)CrossRefGoogle Scholar
  11. J.A. Hines, G. Lütjering, Propagation of microcracks at stress amplitudes below the conventional fatigue limit in Ti-6Al-4V. Fatigue Fract. Eng. Mater. Struct. 22, 657–665 (1999)Google Scholar
  12. W.R. Kerr, D. Eylon, J.A. Hall, On the correlation of specific fracture surface and metallographic features by precision sectioning in titanium alloys. Metall. Trans. A 7A, 1477–1480 (1976)Google Scholar
  13. G. Lütjering, A. Gysler, J. Albrecht, Influence of microstructure on fatigue resistance, in Fatigue ’96, vol. II, ed. by G. Lütjering, H. Nowack (Elsevier Science Ltd, Oxford, 1996), pp. 893–904Google Scholar
  14. D.F. Neal, P.A. Blenkinsop, Internal fatigue origins in α–β titanium alloys. Acta Metall. 24, 59–63 (1976)CrossRefGoogle Scholar
  15. N.E. Paton, J.C. Williams, J.C. Chesnutt, A.W. Thompson, The effects of microstructure on the fatigue and fracture of commercial titanium alloys, AGARD Conference Proceedings No. 185, Advisory Group for Aerospace Research and Development, Neuilly-sur-Seine, 1976, pp. 4-1–4-14Google Scholar
  16. A.L. Pilchak, A. Bhattacharjee, A.H. Rosenberger, J.C. Williams, Low ΔK faceted crack growth in titanium alloys. Int. J. Fatigue 31, 989–994 (2009)CrossRefGoogle Scholar
  17. P.J. Postans, R.H. Jeal, Dependence of crack growth performance upon structure in β processed titanium alloys, in Forging and Properties of Aerospace Materials (The Metals Society, London, 1977), pp. 192–198Google Scholar
  18. J. Ruppen, P. Bhowal, D. Eylon, A.J. McEvily, On the process of subsurface fatigue crack initiation in Ti-6Al-4V, in Fatigue Mechanisms, ASTM STP 675, ed. by J. Fong (American Society for Testing and Materials, Philadelphia, 1979), pp. 47–68Google Scholar
  19. C.A. Stubbington, A.W. Bowen, Improvements in the fatigue strength of Ti-6Al-4V through microstructure control. J. Mater. Sci. 9, 941–947 (1974)CrossRefGoogle Scholar
  20. L. Wagner, Fatigue life behavior, in ASM Handbook Volume 19 Fatigue and Fracture, Second Printing, ed. by S.R. Lampman et al. (ASM International, Materials Park, 1997), pp. 837–845Google Scholar
  21. C.H. Wells, C.P. Sullivan, Low-cycle fatigue crack initiation in Ti-6Al-4V. Trans. ASM 62, 263–270 (1969)Google Scholar
  22. C.C. Wojcik, K.S. Chan, D.A. Koss, Stage I fatigue crack propagation in a titanium alloy. Acta Metall. 36, 1261–1270 (1988)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Aerospace Vehicles DivisionNational Aerospace Laboratory NLREmmeloordThe Netherlands
  2. 2.Air Vehicle DivisionDSTO Defence Science and Technology OrganisationMelbourneAustralia

Personalised recommendations