The Bipolar Metropolitan Region Vienna–Bratislava

Chapter
Part of the Springer Geography book series (SPRINGERGEOGR)

Abstract

The Austrian capital Vienna and the Slovakian capital Bratislava are situated at a distance of only about 60 km from each other. Due to iron curtains, they had been separated for decades. The EU accession of Slovakia finally ended this period and created a highly dynamic metropolitan region. Static transport and land use modelling are seen as inappropriate in such circumstances. The Institute of Transportation, Vienna University of Technology has extensive experience in the application of the methods of System Dynamics in land use and transport planning. The chapter starts with a presentation of the use of the qualitative method of causal loop diagrams (CLD) as a tool to improve the understanding of a functional urban region. The findings of this qualitative analysis were used to develop the operational, quantitative land use, and transport interaction model MARS (Metropolitan Activity Relocation Simulator). The application of the model MARS is presented and discussed using a case study of the metropolitan region Vienna–Bratislava.

Keywords

System dynamics Causal loop diagrams Dynamic modelling Integrated land use and transport modelling Congestion Urban sprawl 

References

  1. Anderson V, Johnson L (1997) Systems thinking basics – from concepts to causal loops. Pegasus Communications, Waltham, MAGoogle Scholar
  2. BMwA (1998) Statistik Straße & Verkehr. Bundesministerium für wirtschaftliche Angelegenheiten Abteilung VI/1, WienGoogle Scholar
  3. Curry A, Hodgson T, Kelnar R, Wilson A (2006) Intelligent infrastructure futures – the scenarios – towards 2055. Foresight Programme of the Office of Science and Technology, London, UK. http://www.foresight.gov.uk/Intelligent%20Infrastructure%20Systems/the_scenarios_2055.pdf
  4. Emberger G, Pfaffenbichler P (2001) Verringerung des Flächenverbrauchs durch verkehrliche Maßnahmen am Beispiel Wien. Versiegelt Österreich? Der Flächenverbrauch und seine Eignung als Indikator für Umweltbeeinträchtigungen. Umweltbundesamt ed., WienGoogle Scholar
  5. Emberger G, Riedl L (2007) MARS meets ANIMAP – Die Koppelung der Modelsuite MARS mit dynamischer Internet-Karographie. REAL CORP 007: To Plan Is Not Enough, Vienna, http://www.corp.at
  6. Gabler T (1988) Gabler Wirtschafts-Lexikon. Betriebswirtschaftlicher Verlag Dr. Th. Gabler GmbH, Wiesbaden, GermanyGoogle Scholar
  7. Haken H (1983) Advanced synergetics – instability hierarchies of self-organizing systems and devices. Springer Series in Synergetics, vol 20. Springer, New York, NYGoogle Scholar
  8. Hanappi I (2006) Bratislava-Gehen, Sehen & Genießen. Falters CITY walks. Falter Verlag, WienGoogle Scholar
  9. Hrdina V, Hanus J, Slimak D, Tvrdon J, Koncek J, Rejak S, Gregacova J, Minarovych P, Vargicova G (2002) Background Report on the Territorial Review of Vienna – Bratislava Region. AUREX, s.r.o. (architecture, urban planning, spatial and regional planning, ecology and environment, informatics); Commissioned by OECD, BratislavaGoogle Scholar
  10. Knoflacher H (1995) Economy of Scale – Die Transportkosten und das Ökosystem. GAIA 4(2):100–108Google Scholar
  11. Koh A, Shepherd S (2009) MARS-SATURN link – report to DfT on Task 3. Institute for Transport Studies, University of Leeds. Project Funded by Department for Transport, Leeds, UK. http://www.its.leeds.ac.uk/projects/mars_distillate/downloads/REport%20mars-saturn-task3-final.doc
  12. MA 18 – Stadtentwicklung und Stadtplanung (2003) Vienna-Bratislava Region, Austrian Background Report for the OECD Territorial Review and Assessment and Recommendations of the OECD. Werkstattberichte, Nr. 59, Stadtentwicklung Wien, MA 18 – Stadtentwicklung und Stadtplanung, WienGoogle Scholar
  13. Magistratsabteilung 66 – Statistisches Amt (1994) Statistisches Jahrbuch der Stadt Wien 1993. Magistrat der Stadt Wien, WienGoogle Scholar
  14. Marner T (2006) Die Modellierung innerstädtischer Staus und die Wirkungsweise ausgewählter wirtschaftspolitischer Maßnahmen – eine spieltheoretische Analyse. Zeitschrift für Verkehrswissenschaft 77(3):199–225Google Scholar
  15. May AD, Karlstrom A, Marler N, Matthews B, Minken H, Monzon A, Page M, Pfaffenbichler P, Shepherd S (2005) Developing sustainable urban land use and transport strategies – a decision makers’ guidebook. Institute for Transport Studies, University of Leeds, LeedsGoogle Scholar
  16. Metz D (2007) The Newbury bypass: what we can learn from before and after studies. Traffic Eng Control 48(8):372–374Google Scholar
  17. Minken H, Jonsson D, Shepherd SP, Järvi T, May AD, Page M, Pearman A, Pfaffenbichler PC, Timms P, Vold A (2003) Developing sustainable land use and transport strategies – a methodological guidebook. TOI Report, 619, Institute of Transport Economics, OsloGoogle Scholar
  18. OECD (2003) OECD territorial review Vienna-Bratislava, Austria/Slovak Republic. Organisation for Economic Cooperation and Development, ParisCrossRefGoogle Scholar
  19. Pfaffenbichler P (2001a) Analysing the driving forces behind decision-making processes for the (new) location of businesses. In: WORK 2001, first international conference on employment creation in development, Johannesburg, pp 293–304Google Scholar
  20. Pfaffenbichler P (2001b) Verkehrsmittel und Strukturen. Wissenschaft & Umwelt Interdisziplinär 3(1):35–42Google Scholar
  21. Pfaffenbichler P (2008) MARS – metropolitan activity relocation simulator. Verlag Dr. Mueller, SaarbrueckenGoogle Scholar
  22. Pfaffenbichler P (2011) Modelling with systems dynamics as a method to bridge the gap between politics, planning and science? Lessons learnt from the development of the land use and transport model MARS. Transp Rev: A Transnational Transdisciplinary J 31(2):267–289Google Scholar
  23. Pfaffenbichler P, Emberger G, Shepherd S (2008) The integrated dynamic land use and transport model MARS. J Netw Spat Econ 8(2–3):183–200CrossRefGoogle Scholar
  24. Pfaffenbichler P, Ibesich N, Emberger G (2006) Can decision making processes benefit from a user friendly land use and transport interaction model? In: van Leeuwen JP, Timmermans HJP (eds) Innovations in design & decision support systems in architecture and urban planning. Springer, Dordrecht, pp 3–17Google Scholar
  25. Pfaffenbichler P, Krutak R, Renner S (2011) Modelling the development of vehicle fleets with alternative propulsion technologies. ECEEE 2011 summer study, Belambra Presqu'île de Giens, FranceGoogle Scholar
  26. Roberts N, Andersen DF, Deal RM, Garet MS, Shaffer WA (1994) Introduction to computer simulation – a system dynamics approach. Productivity Press, PortlandGoogle Scholar
  27. Senge PM (2006) Die Fünfte Disziplin. Kunst und Praxis der lernenden Organisation, Klett-Cotta, Stuttgart, GermanyGoogle Scholar
  28. Shepherd S, Koh A, Balijepalli C, Liu R, Pfaffenbichler P, Emberger G, Ash A (2009) Overcoming barriers to model use. Eur J Transp Infrastructure Res 9(3):277–295Google Scholar
  29. Shepherd S, Koh A, Balijepalli C, Pfaffenbichler P (2010) Use of modelling tools to deliver a sustainable transport system. 12th world conference on transport research, LisbonGoogle Scholar
  30. Sterman JD (2000) Business dynamics – systems thinking and modeling for a complex world. McGraw-Hill Higher Education, Boston, MAGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institute of Transportation, Vienna University of TechnologyViennaAustria

Personalised recommendations