KS Input Spectrum, Some Fundamental Works on the Vibration Spectrum of a Self-similar Linear Chain

  • T. M. Michelitsch
  • F. C. G. A. Nicolleau
  • A. F. Nowakowski
  • S. Derogar
Part of the ERCOFTAC Series book series (ERCO, volume 18)


The turbulence energy spectrum is a significant input parameter of KS modeling. In parallel to KS, fractal approaches have been developed in fluid mechanics (often by the same team of researchers doing KS) either experimentally or numerically to interfere with spectral law. We add another direction of research to this interesting problem by looking at what analytical mechanics can teach us about the vibration spectrum of a self similar chain hoping that one day that knowledge will help our understanding of spectral laws and fractal forcing in fluid mechanics. We consider some general aspects of the construction of self-similar functions and linear operators and deduce a self-similar variant of the Laplacian operator and of the d’Alembertian wave operator. The derived self-similar wave operator describes the dynamics of a quasi-continuous linear chain of infinite length with a spatially self-similar distribution of nonlocal inter-particle springs. The self-similarity of the nonlocal harmonic particle-particle interactions results in a dispersion relation of the form of a Weierstrass-Mandelbrot function which exhibits self-similar and fractal features. We also show that the self-similar wave equation in a certain approximation corresponds to (nonlocal) fractional derivatives.


Fractal Dimension Fourier Mode Sierpinski Gasket Fractal Object Elastic Energy Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Fruitful discussions with G.A. Maugin, J.-M. Conoir and D. Queiros-Conde are gratefully acknowledged.


  1. 1.
    Abou El-Azm Aly, A., Chong, C.H.A., Nicolleau, F.C.G.A., Beck, S.B.M.: Experimental study of the pressure drop after fractal-shaped orifices in a turbulent flow pipe. Proc. World Acad. Sci., Exp. Therm. Fluid Sci. 34, 104–111 (2010) CrossRefGoogle Scholar
  2. 2.
    Bondarenko, A.N., Levin, V.A.: Self similar spectrum of fractal lattice. In: Science and Technology (2005) KORUS Proceedings. The 9th Russian-Korean Int. Symposium, pp. 33–35. ISBN 0-7803-8943-3 (2005) CrossRefGoogle Scholar
  3. 3.
    Chester, S., Meneveau, C., Parlange, M.: Modeling turbulent flow over fractal trees with renormalized numerical simulation. J. Comp. Phys. 225 (2007) Google Scholar
  4. 4.
    Claussen, J.C., Nagler, J., Schuster, H.G.: Sierpinski signal generates 1/f α spectra. Phys. Rev. E 70, 032101 (2004) CrossRefGoogle Scholar
  5. 5.
    Cohen, N.: Fractal antennas. Commun. Q. Summer 9 (1995) Google Scholar
  6. 6.
    Davila, J., Vassilicos, J.C.: Richardson pair diffusion and the stagnation point structure of turbulence. Phys. Rev. Lett. 91, 144–501 (2003) Google Scholar
  7. 7.
    Domany, E., Alexander, S., Bensimon, D., Kadanoff, L.P.: Solution to the Shrodinger equation on some fractal lattices. Phys. Rev. B 28(6), 3110 (1983) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Epstein, M., Adeeb, S.M.: The stiffness of self-similar fractals. Int. J. Solids Struct. 45(11–12), 3238 (2008) zbMATHCrossRefGoogle Scholar
  9. 9.
    Fung, J.C.H., Vassilicos, J.C.: Two-particle dispersion in turbulentlike flows. Phys. Rev. E 57(2), 1677–1690 (1998) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ghosh, K., Fuchs, R.: Critical behavior in the dielectric properties of random self-similar composites. Phys. Rev. B 44, 7330–7343 (1991) CrossRefGoogle Scholar
  11. 11.
    Hardy, G.H.: Weierstrass’s nondifferentiable function. Trans. Am. Math. Soc. 7(1), 301–325 (1916) MathSciNetGoogle Scholar
  12. 12.
    Hohlfeld, S.R., Cohen, N.: Self-similarity and the geometric requirements for frequency independence in antennae. Fractals 7(1), 79–84 (1999) CrossRefGoogle Scholar
  13. 13.
    Humphrey, J.A.C., Schuler, C.A., Rubinsky, B.: On the use of the Weierstrass-Mandelbrot function to describe the fractal component of turbulent velocity. Fluid Dyn. Res. 9(1–3), 81 (1992). ISSN 0169-5983 CrossRefGoogle Scholar
  14. 14.
    Hurst, D., Vassilicos, J.C.: Scalings and decay of fractal-generated turbulence. Phys. Fluids 19(3), 035103 (2007) CrossRefGoogle Scholar
  15. 15.
    Kigami, J.: A harmonic calculus on the Sierpinski spaces. Jpn. J. Appl. Math. 8, 259–290 (1989) MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Von Mill, J. (ed.) Mathematical Studies, vol. 204, Elsevier, Amsterdam (2006). ISBN-10 0-444-51832-0 Google Scholar
  17. 17.
    Kopelman, R., Shortreed, M., Shi, Z.-Y., Tan, W., Xu, Z., Moore, J.S., Bar-Haim, A., Klafter, J.: Spectroscopic evidence for excitionic localization in fractal antenna supermolecules. Phys. Rev. Lett. 78(7), 1239 (1997) CrossRefGoogle Scholar
  18. 18.
    Kummer, E.E.: Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen. J. Reine Angew. Math. 44, 93 (1852) zbMATHCrossRefGoogle Scholar
  19. 19.
    Laizet, S., Vassilicos, J.C.: Multiscale of turbulence. J. Multiscale Model. 1(1), 177196 (2009) Google Scholar
  20. 20.
    Laizet, S., Lamballais, E., Vassilicos, J.C.: A numerical strategy to combine high-order schemes, complex geometry and massively parallel computing for the DNS of fractal generated turbulence. Comput. Fluids, 39(3), 471–484 (2010) CrossRefGoogle Scholar
  21. 21.
    Li, K., Stockman, M.I., Bergman, D.J.: Self-similar chain of metal nanospheres as an efficient nanolens. Phys. Rev. Lett. 91(22), 227402 (2003) CrossRefGoogle Scholar
  22. 22.
    Mandelbrot, B.: The Fractal Geometry of Nature. Freeman, New York (1982). ISBN 0-716-71186-9 zbMATHGoogle Scholar
  23. 23.
    Mazzi, B., Vassilicos, J.C.: Fractal-generated turbulence. J. Fluid Mech. 502, 65–87 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Michelitsch, T.M., Maugin, G.A., Nicolleau, F.C.G.A., Nowakowski, A.F., Derogar, S.: Dispersion relations and wave operators in self-continuous linear chains. Phys. Rev. E 80(1), 011135 (2009) MathSciNetCrossRefGoogle Scholar
  25. 25.
    Michelitsch, T.M., Maugin, G.A., Nowakowski, A.F., Nicolleau, F.C.G.A.: Analysis of the vibrational mode spectrum of a linear chain with spatially exponential properties. Int. J. Eng. Sci. 47(2), 209–220 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Miller, K.S.: An Introduction to the Fractional Calculus and Fractional Differential Equations, 1st edn. Miller, K.S., Ross, B. (eds.). Wiley, New York (1993). ISBN 0-471-58884-9 Google Scholar
  27. 27.
    Morel, P., Larchevêque, M.: Relative dispersion of constant-level balloons in the 20mb general circulation. J. Atmos. Sci. 31, 2189 (1974) CrossRefGoogle Scholar
  28. 28.
    Nicolleau, F., Vassilicos, J.C.: Turbulent pair diffusion. Phys. Rev. Lett. 90(2), 024503 (2003) CrossRefGoogle Scholar
  29. 29.
    Nicolleau, F., Yu, G.: Two-particle diffusion and locality assumption. Phys. Fluids 16(4), 2309–2321 (2004) CrossRefGoogle Scholar
  30. 30.
    Ostoja-Starzewski, M.: Towards a thermomechanics of fractal media. ZAMP 58, 1085–1096 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Queiros-Conde, D., Vassilicos, J.C.: Turbulent wakes of 3-D fractal grids. In: Intermittency in Turbulence and Other Dynamical Systems. Cambridge University Press, Cambridge (2000) Google Scholar
  32. 32.
    Raghavachari, S., Glazier, J.A.: Spatially coherent states in fractally coupled map lattices. Phys. Rev. Lett. 74(16), 3297 (1995) CrossRefGoogle Scholar
  33. 33.
    Richardson, L.F.: Atmospheric diffusion on a distance-neighbour graph. Beitr. Phys. Frei. Atmos. 15, 24–29 (1926) Google Scholar
  34. 34.
    Seoud, R.E., Vassilicos, J.C.: Dissipation and decay of fractal-generated turbulence. Phys. Fluids 19(10), 105108 (2007) CrossRefGoogle Scholar
  35. 35.
    Tarasov, E.T.: Chains with the fractal dispersion law. J. Phys. A: Math. Theor. 41, 035101 (2008) MathSciNetCrossRefGoogle Scholar
  36. 36.
    Vassilicos, J.C., Fung, J.C.H.: The self-similar topology of passive interfaces advected by two-dimensional turbulent-like flows. Phys. Fluids 7(8), 1970 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Zheng, H.W., Nicolleau, F.C.G.A., Qin, N.: Detached eddy simulation for turbulent flows in a pipe with a snowflake fractal orifice. In: Nicolleau, F.C.G.A. et al.(eds.) New Approaches in Modeling Multiphase Flows and Dispersion in Turbulence, Fractal Methods and Synthetic Turbulence. ERCOFTAC Series, vol. 18. Springer, Dordrecht (2012) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • T. M. Michelitsch
    • 1
  • F. C. G. A. Nicolleau
    • 2
  • A. F. Nowakowski
    • 2
  • S. Derogar
    • 3
  1. 1.Institut Jean le Rond d’AlembertUniversité Pierre et Marie Curie (Paris 6)ParisFrance
  2. 2.Sheffield Fluid Mechanics Group, Department of Mechanical EngineeringThe University of SheffieldSheffieldUK
  3. 3.School of Mechanical, Aerospace and Civil EngineeringThe University of ManchesterManchesterUK

Personalised recommendations