Detached Eddy Simulation for Turbulent Flows in a Pipe with a Snowflake Fractal Orifice

  • H. W. Zheng
  • F. C. G. A. Nicolleau
  • N. Qin
Part of the ERCOFTAC Series book series (ERCO, volume 18)


Turbulent flows in a pipe with a snowflake fractal shape (SF2) orifice are investigated using the parallelized, density-based, dynamic mesh and detached eddy simulation code (DG-DES) (Xia, PhD thesis, 2005; Xia and Qin, AIAA 2005-106, 2005). For comparison with the laboratory experiment, the flow is essentially a low Mach number flow. In order to tackle the low speed problem of the density based method, the SLAU (Simple Low dissipation AUSM) (Shima and Kitamura in 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA 2009-136, 2009) is adopted in this paper. The scheme exhibits low numerical dissipations for low speeds and needs no problem-dependent “cut-off Mach number”. The results for the flows after the orifice are compared with those of the corresponding experiment (Chong, PhD thesis, 2008). Comparisons show good agreements in the mean velocity profiles at the different holes.


Large Eddy Simulation Reynolds Average Navier Stokes Reynolds Average Navier Stokes Detach Eddy Simulation Turbulent Pipe Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Fruitful discussions with J.C. Vassilicos and S. Laizet are gratefully acknowledged.

This work was supported by the Engineering and Physical Sciences Research Council through the UK Turbulence Consortium (Grant EP/G069581/1).


  1. 1.
    Abou El-Azm Aly, A., Chong, C.H.A., Nicolleau, F.C.G.A., Beck, S.B.M.: Experimental study of the pressure drop after fractal-shaped orifices in a turbulent flow pipe. Proc. World Acad. Sci., Exp. Therm. Fluid Sci. 34, 104–111 (2010) CrossRefGoogle Scholar
  2. 2.
    Chester, S., Meneveau, C., Parlange, M.B.: Modeling turbulent flow over fractal trees with renormalized numerical simulation. J. Comput. Phys. 225, 427–448 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Chong, A.C.H.: Turbulence flow generated by a fractal grid. PhD thesis, The University of Sheffield (2008) Google Scholar
  4. 4.
    Davila, J., Vassilicos, J.C.: Richardson pair diffusion and the stagnation point structure of turbulence. Phys. Rev. Lett. 91, 144–501 (2003) Google Scholar
  5. 5.
    Fung, J.C.H., Vassilicos, J.C.: Two-particle dispersion in turbulentlike flows. Phys. Rev. E 57(2), 1677–1690 (1998) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Goto, S., Osborne, D.R., Vassilicos, J.C., Haigh, J.D.: Acceleration statistics as measures of statistical persistence of streamlines in isotropic turbulence. Phys. Rev. E 71, 015301(R) (2005) MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hurst, D., Vassilicos, J.C.: Scalings and decay of fractal-generated turbulence. Phys. Fluids 19(3), 035103 (2007) CrossRefGoogle Scholar
  8. 8.
    Karypis, G., Kumar, V.: User manual of METIS: a software package for partitioning unstructured graphs, partitioning meshes and computing fill-reduced orderings of sparse matrices, version 4.0. University of Minnesota (1998) Google Scholar
  9. 9.
    Laizet, S., Vassilicos, J.C.: Multiscale of turbulence. J. Multiscale Model. 1(1), 177196 (2009) Google Scholar
  10. 10.
    Laizet, S., Lamballais, E., Vassilicos, J.C.: A numerical strategy to combine high-order schemes, complex geometry and massively parallel computing for the DNS of fractal generated turbulence. Comput. Fluids 39(3), 471–484 (2010) CrossRefGoogle Scholar
  11. 11.
    Mandelbrot, B.: On the geometry of homogeneous turbulence with stress on the fractal dimension of the iso-surfaces of scalars. J. Fluid Mech. 72(2), 401–416 (1975) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Mazzi, B., Vassilicos, J.C.: Fractal-generated turbulence. J. Fluid Mech. 502, 65–87 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Mazzi, B., Okkels, F., Vassilicos, J.C.: A shell-model approach to fractal-induced turbulence. Eur. Phys. J. B 28, 243–251 (2002) CrossRefGoogle Scholar
  14. 14.
    Meneveau, C., Sreenivasan, K.R.: Interface dimension in intermittent turbulence. Phys. Rev. A 41(4), 2246–2248 (1990) MathSciNetCrossRefGoogle Scholar
  15. 15.
    Queiros-Conde, D., Vassilicos, J.C.: Intermittency in Turbulence and Other Dynamical Systems, Turbulent Wakes of 3-D Fractal Grids. Cambridge University Press, Cambridge (2001) Google Scholar
  16. 16.
    Roe, P.L.: Approximate Riemann solvers, parameters vectors and difference schemes. J. Comput. Phys. 43, 357–372 (1981) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Seoud, R.E., Vassilicos, J.C.: Dissipation and decay of fractal-generated turbulence. Phys. Fluids 19(10), 105108 (2007) CrossRefGoogle Scholar
  18. 18.
    Shima, E., Kitamura, K.: On new simple low-dissipation scheme of AUSM-family for all speeds. In: 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, AIAA 2009-136 (2009) Google Scholar
  19. 19.
    Spalart, P.R.: Young-Person’s guide to detached-eddy simulation grids. Technical Report NASA/CR-2001-211032, NASA Langley Research Center, Hampton, VA (2001) Google Scholar
  20. 20.
    Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. AIAA Paper 92-0439 (1992) Google Scholar
  21. 21.
    Spalart, P.R., Jou, W.-H., Strelets, M., Allmaras, S.R.: Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: Advances in DNS/LES (Proceedings of 1st AFOSR Int. Conf. on DNS and LES, Louisiana Tech.), pp. 137–147. Greyden Press, Dayton (1997) Google Scholar
  22. 22.
    Sreenivasan, K.R., Meneveau, C.: The fractal facets of turbulence. J. Fluid Mech. 173, 357–386 (1986) MathSciNetCrossRefGoogle Scholar
  23. 23.
    Sreenivasan, K.R., Ramshankar, R., Meneveau, C.: Mixing, entrainment and fractal dimensions of surfaces in turbulent flows. Proc. R. Soc. Lond. A 421, 79–108 (1989) zbMATHCrossRefGoogle Scholar
  24. 24.
    Vassilicos, J.C., Fung, J.C.H.: The self-similar topology of passive interfaces advected by two-dimensional turbulent-like flows. Phys. Fluids 7(8), 1970 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Weiss, M., Smith, W.A.: Preconditioning applied to variable and constant density flow. AIAA J. 33, 2050–2057 (1995) zbMATHCrossRefGoogle Scholar
  26. 26.
    Xia, H.: Dynamic grid detached-eddy simulations for synthetic jet flows. PhD thesis, The University of Sheffield (2005) Google Scholar
  27. 27.
    Xia, H., Qin, N.: Dynamic grid and unsteady boundary conditions for synthetic jet flow. AIAA 2005-106 (2005) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • H. W. Zheng
    • 1
  • F. C. G. A. Nicolleau
    • 2
  • N. Qin
    • 3
  1. 1.LHD, Institute of MechanicsChinese Academy of SciencesBeijingChina
  2. 2.Sheffield Fluid Mechanics Group, Department of Mechanical EngineeringThe University of SheffieldSheffieldUK
  3. 3.Department of Mechanical EngineeringThe University of SheffieldSheffieldUK

Personalised recommendations