Skip to main content

Part of the book series: ERCOFTAC Series ((ERCO,volume 18))

Abstract

In thermal superfluid turbulence, an inviscid superfluid interacts with a viscous normal-fluid via mutual friction forces. Due to nonlinearities in both constituents, vortical, deterministic fluctuations (turbulence) arise under most flow conditions. Presently, computational and numerical complexity pose obstacles to high Reynolds number, fully resolved, developed turbulence computations. The application of Kinematic Simulation (KS) modeling to the inertial range of the normal-fluid constituent provided significant new results like superfluid energy spectra scalings, the fractal dimension of superfluid vorticity, inertial range pressure spectra scalings exhibiting departure from classical Kolmogorov theory predictions, as well as useful insight into superfluid turbulence decay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zaremba, E., Nikuni, T., Griffin, A.: J. Low Temp. Phys. 116, 277 (1999)

    Article  Google Scholar 

  2. Yagi, K., Hatsuda, T., Miake, Y.: Quark-Gluon Plasma. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  3. Romatschke, P., Romatschke, U.: Phys. Rev. Lett. 99, 172301 (2007)

    Article  Google Scholar 

  4. Feynman, R.P.: Prog. Low Temp. Phys. I 16 (1957)

    Google Scholar 

  5. Schwarz, K.W.: Phys. Rev. B 31, 5782 (1985)

    Article  Google Scholar 

  6. Samuels, D.C., Kivotides, D.: Phys. Rev. Lett. 83, 5306 (1999)

    Article  Google Scholar 

  7. Kivotides, D.: Phys. Rev. B 76, 054503 (2007)

    Article  Google Scholar 

  8. Fung, J.C.H., Vassilicos, J.C.: Phys. Rev. E 57, 1677 (1998)

    Article  MathSciNet  Google Scholar 

  9. Nicolleau, F., Sung, K.-S., Vassilicos, J.C.: Phys. Rev. E 78, 046306 (2008)

    Article  MathSciNet  Google Scholar 

  10. Wilkin, S.L., Barenghi, C.F., Shukurov, A.: Phys. Rev. Lett. 99, 134501 (2007)

    Article  Google Scholar 

  11. Kivotides, D., Barenghi, C.F., Samuels, D.C.: Phys. Rev. Lett. 87, 155301 (2001)

    Article  Google Scholar 

  12. Kivotides, D., Vassilicos, J.C., Samuels, D.C., Barenghi, C.F.: EPL 57, 845 (2002)

    Article  Google Scholar 

  13. Kivotides, D., Vassilicos, J.C., Barenghi, C.F., Khan, M.A.I., Samuels, D.C.: Phys. Rev. Lett. 87, 275302 (2001)

    Article  Google Scholar 

  14. Kivotides, D.: Phys. Lett. A 326, 423 (2004)

    Article  Google Scholar 

  15. Stalp, S.R., Skrbek, L., Donnelly, R.J.: Phys. Rev. Lett. 82, 4831 (1999)

    Article  Google Scholar 

  16. Maurer, J., Tabeling, P.: EPL 43, 29 (1998)

    Article  Google Scholar 

  17. Kivotides, D., Vassilicos, J.C., Samuels, D.C., Barenghi, C.F.: Phys. Rev. Lett. 86, 3080 (2001)

    Article  Google Scholar 

  18. Kivotides, D., Leonard, A.: Phys. Rev. Lett. 90, 234503 (2003)

    Article  Google Scholar 

  19. Kivotides, D.: Phys. Rev. Lett. 96, 175301 (2006)

    Article  Google Scholar 

  20. Kivotides, D., Mee, A.J., Barenghi, C.F.: New J. Phys. 9, 291 (2007)

    Article  Google Scholar 

  21. Kivotides, D., Barenghi, C.F., Mee, A.J., Sergeev, Y.A.: Phys. Rev. Lett. 99, 074501 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demosthenes Kivotides .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kivotides, D. (2012). The Impact of Kinematic Simulations on Quantum Turbulence Theory. In: Nicolleau, F., Cambon, C., Redondo, JM., Vassilicos, J., Reeks, M., Nowakowski, A. (eds) New Approaches in Modeling Multiphase Flows and Dispersion in Turbulence, Fractal Methods and Synthetic Turbulence. ERCOFTAC Series, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2506-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2506-5_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2505-8

  • Online ISBN: 978-94-007-2506-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics