Advertisement

Transient disturbances in shear flows

  • Andrey V. BoikoEmail author
  • Alexander V. Dovgal
  • Genrih R. Grek
  • Victor V. Kozlov
Chapter
  • 1.4k Downloads
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 98)

Abstract

In the previous chapters, a far-field (asymptotic) response of shear flows to modal disturbances was considered. In this chapter, we concentrate on the response in the near-field of the disturbance source. As we know, the classical analysis of linear stability treats the disturbances as sets of separate modes of the linearized Navier–Stokes equations. However, the approach does not take into account the fact that these equations are not self-adjoint, i.e., the modes are not orthogonal. This may give rise to strong transient effects pronounced in the source near-field. It has been proven experimentally that transient phenomena close to the disturbance source can be drastic for the downstream transition to turbulence, even if the disturbances are asymptotically stable.

Keywords

Free Stream Turbulence Transient Growth Turbulent Spot Optimal Perturbation Disturbance Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

References

  1. Boiko AV, Grek GR, Sboev DS (2003) Spectral analysis of localized disturbances in boundary layer at subcritical Reynolds numbers. Phys Fluids 15(12):3613–3624 ADSCrossRefGoogle Scholar
  2. Breuer KS, Haritonidis JH (1990) The evolution of a localized disturbance in a laminar boundary layer. Part 1. Weak disturbances. J Fluid Mech 220:569–594 ADSCrossRefGoogle Scholar
  3. Breuer KS, Kuraishi T (1994) Transient growth in two- and three-dimensional boundary layers. Phys Fluids A 6(6):1983–1993 ADSzbMATHCrossRefGoogle Scholar
  4. Ellingsen T, Palm E (1975) Stability of linear flow. Phys Fluids 18(4):487–478 ADSzbMATHCrossRefGoogle Scholar
  5. Farrell BF, Ioannou PJ (1993) Optimal excitation of three dimensional perturbations in viscous constant shear flow. Phys Fluids A 5(6):1390–1400 ADSzbMATHCrossRefGoogle Scholar
  6. Grek GR, Kozlov VV, Ramazanov MP (1985) Three types of disturbances from the point source in the boundary layer. In: Kozlov VV (ed) Laminar–Turbulent Transition, Springer–Verlag, Berlin, IUTAM Symposium, pp 267–272 Google Scholar
  7. Gustavsson LH (1979) Initial-value problem for boundary layer flows. Phys Fluids 22(9):1602–1605 MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. Gustavsson LH (1991) Energy growth of three-dimensional disturbances in plane Poiseuille flow. J Fluid Mech 224:241–260 ADSzbMATHCrossRefGoogle Scholar
  9. Hanifi A, Schmid PJ, Henningson DS (1994) Transient growth in compressible boundary layer flow. In: Henningson DS (ed) Bypass Transition – Proceedings from a Mini-Workshop, Royal Institute of Technology, Stockholm, pp 51–65 Google Scholar
  10. Henningson DS, Schmid PJ (1994) A note on measures on disturbance size in spatially evolving flows. Phys Fluids A 6(8):2862–2864 ADSzbMATHCrossRefGoogle Scholar
  11. Henningson DS, Gustavsson LH, Breuer KS (1994) Localized disturbances in parallel shear flows. Appl Sci Res 53:51–97 zbMATHCrossRefGoogle Scholar
  12. Hultgren LS, Gustavsson LH (1981) Algebraic growth of disturbances in a laminar boundary layer. Phys Fluids 24(6):1000–1004 ADSzbMATHCrossRefGoogle Scholar
  13. Klingmann BGB (1991) Laminar–turbulent transition in plane Poiseuille flow. PhD thesis, Department of Gasdynamics, Stockholm Google Scholar
  14. Klingmann BGB (1992) On transition due to three-dimensional disturbances in plane Poiseuille flow. J Fluid Mech 240:167–195 ADSCrossRefGoogle Scholar
  15. Luchini P (1996) Reynolds-number-independent instability of the boundary layer over a flat surface. J Fluid Mech 327:101–115 ADSzbMATHCrossRefGoogle Scholar
  16. Luchini P (2000) Reynolds-number-independent instability of the boundary layer over a flat surface: Optimal perturbations. J Fluid Mech 404:289–309 MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. Matsubara M, Kozlov VV, Alfredsson PH, Bakchinov AA, Westin KJA (1996) On flat plate boundary layer perturbations at high free stream turbulence level. In: Proc. Eighth Internat. Conf. on Methods of Aerophysical Research, RAS. Sib. Branch Inst. Theoret. Appl. Mech., Novosibirsk, vol 1, pp 174–179 Google Scholar
  18. Schmid PJ, Henningson DS (1994) Optimal energy density growth in Hagen-Poiseuille flow. J Fluid Mech 277:197–225 MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. Schmid PJ, Kytomaa HK (1994) Transient and asymptotic stability of granular shear flow. J Fluid Mech 264:255–275 MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. Tumin A, Reshotko E (2001) Spatial theory of optimal disturbances in boundary layers. Phys Fluids 13(7):2097–2104 MathSciNetADSCrossRefGoogle Scholar
  21. Westin KJA, Boiko AV, Klingmann BGB, Kozlov VV, Alfredsson PH (1994) Experiments in a boundary layer subjected to free stream turbulence. Part 1. Boundary layer structure and receptivity. J Fluid Mech 281:193–218 ADSCrossRefGoogle Scholar
  22. Westin KJA, Bakchinov AA, Kozlov VV, Alfredsson PH (1998) Experiments on localized disturbances in a flat plate boundary layer. Part 1: The receptivity and evolution of a localized free stream disturbance. Eur J Mech B/Fluids 17(6):823–846 zbMATHCrossRefGoogle Scholar

Further Reading

  1. Andersson P, Berggren M, Henningson DS (1999) Optimal disturbances and bypass transition in boundary layers. Phys Fluids 11(1):134–150 MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. Berlin S, Henningson DS (1994) A study of boundary layer receptivity to disturbances in the free stream. In: Henningson DS (ed) Bypass Transition – Proceedings from a Mini-Workshop, Royal Institute of Technology, Stockholm, pp 43–49 Google Scholar
  3. Boiko AV, Westin KJA, Klingmann BGB, Kozlov VV, Alfredsson PH (1994) Experiments in a boundary layer subjected to free stream turbulence. Part 2. The role of TS-waves in the transition process. J Fluid Mech 281:219–245 ADSCrossRefGoogle Scholar
  4. Butler KM, Farrell BF (1992) Three-dimensional perturbations in viscous shear flow. Phys Fluids A 4(8):1627–1650 ADSCrossRefGoogle Scholar
  5. Corbett P, Bottaro A (2000) Optimal perturbations for boundary layers subject to stream-wise pressure gradient. Phys Fluids 12(1):120–130 MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. Henningson DS (1991) An eigenfunction expansion of localized disturbances. In: Johansson AV, Alfredsson PH (eds) Advances in Turbulence 3, Springer–Verlag, Berlin, pp 162–169 Google Scholar
  7. Herbert T, Lin N (1993) Studies of boundary-layer receptivity with parabolized stability equations. AIAA Paper 93–3053 Google Scholar
  8. Reddy SC, Schmid PJ, Henningson DS (1993) Pseudospectra of Orr-Sommerfeld operator. SIAM J Appl Math 53(1):15–47 MathSciNetzbMATHCrossRefGoogle Scholar
  9. Schmid PJ, Henningson DS (2000) Stability and transition in shear flows. Springer–Verlag, Berlin Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Andrey V. Boiko
    • 1
    Email author
  • Alexander V. Dovgal
    • 1
  • Genrih R. Grek
    • 1
  • Victor V. Kozlov
    • 1
  1. 1.Inst. Theoretical & Applied MechanicsRussian Academy of SciencesNovosibirskRussia

Personalised recommendations