Advertisement

Instability of separated boundary layers

  • Andrey V. BoikoEmail author
  • Alexander V. Dovgal
  • Genrih R. Grek
  • Victor V. Kozlov
Chapter
  • 1.5k Downloads
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 98)

Abstract

In this chapter we discuss flow instability at laminar boundary-layer separation that can happen on airfoils and wings, in diffusors, at sudden surface variations such as steps and bumps, etc. Within this topic, a good deal of research data is available for local separation regions generated when the separated layer reattaches back to the surface. Such flows, also known as ‘separation bubbles,’ are in focus of the following consideration.

Keywords

Particle Image Velocimetry Direct Numerical Simulation Separation Bubble Separation Region Instability Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

References

  1. Boiko A, Dovgal A, Hein S, Henning A (2011) Particle image velocimetry of a low-Reynolds-number separation bubble. Exp Fluids 50(1):13–21 CrossRefGoogle Scholar
  2. Boiko AV, Dovgal AV (1992) Instability of locally separated flows to small-amplitude disturbances. Sib Fiz-Techn Zh 34(3):19–24, In Russian. Google Scholar
  3. Boiko AV, Dovgal AV, Kozlov VV (1989) Nonlinear interactions between perturbations in transition to turbulence in the zone of laminar boundary-layer separation. Soviet J Appl Phys 3(2):46–52 Google Scholar
  4. Boiko AV, Dovgal AV, Kozlov VV, Scherbakov VA (1990) Instability and receptivity of a boundary layer close to 2D surface imperfections. Izv Sib Otd Akad Nauk SSSR, Ser Tekhn Nauk 1:50–56 Google Scholar
  5. Boiko AV, Dovgal AV, Simonov OA, Scherbakov VA (1991) Effects of laminar–turbulent transition in separation bubbles. In: Kozlov and Dovgal(1991) pp 565–572 Google Scholar
  6. Cousteix J, Pailhas G (1979) Étude exploratoire d’un processus de transition laminaire–turbulent au voisinage du décollement d’une couche laminaire. Rech Aérospat 1979(3):213–218 Google Scholar
  7. Dovgal AV, Kozlov VV (1983) Instability of flow separating from a wall with an inflexion. Dokl Akad Nauk 270(6):1356–1358 Google Scholar
  8. Dovgal AV, Kozlov VV (1984) Stability of separated flow in a dihedral corner. Fluid Mech – Soviet Res 13(1):137–143 Google Scholar
  9. Dovgal AV, Kozlov VV (1990) Hydrodynamic instability and receptivity of small scale separation regions. In: Arnal D, Michel R (eds) Laminar–Turbulent Transition IUTAM Symposium, Springer–Verlag, Berlin, pp 523–531 Google Scholar
  10. Dovgal AV, Kozlov VV, Simonov OA (1988a) Development of a spatial wave packet of disturbances in a swept-wing boundary layer. Izv Sib Otd Akad Nauk SSSR, Ser Tekhn Nauk 3(11):43–47 Google Scholar
  11. Dovgal AV, Kozlov VV, Simonov OA (1988b) Stability of three-dimensional flow generated upon separation from a wall with an inflexion. Soviet J Appl Phys 2(4):18–24 Google Scholar
  12. Dovgal AV, Kozlov VV, Michalke A (1995) Contribution to the instability of laminar separating flows along axisymmetric bodies. Part 2: Experiment and comparison with theory. Eur J Mech B/Fluids 14(3):351–365 Google Scholar
  13. Gaster M (1967) The structure and behavior of separation bubbles. R&M 3595, ARC Google Scholar
  14. Gilev VM, Dovgal AV, Kachanov YS, Kozlov VV (1988) Development of three-dimensional disturbances in a boundary layer with pressure gradient. Fluid Dyn 23(3):393–399 ADSCrossRefGoogle Scholar
  15. Gruber K, Bestek H, Fasel H (1987) Interaction between a Tollmien–Schlichting wave and a laminar separation bubble. AIAA Paper 87–1256 Google Scholar
  16. Häggmark CP, Bakchinov AA, Alfredsson PH (2000) Experiments on a two-dimensional laminar separation bubble. Philos Trans R Soc Lond A 358:3193–3205 ADSzbMATHCrossRefGoogle Scholar
  17. Hetsch T, Rist U (2009) The influence of sweep on the linear stability of a series of swept laminar separation bubbles. Eur J Mech B/Fluids 28:494–505 zbMATHCrossRefGoogle Scholar
  18. van Ingen JL (1975) On the calculation of laminar separation bubbles in two dimensional incompressible flow. In: AGARD-CP-168 Google Scholar
  19. Kachanov YS (1985) Development of spatial wave packets in boundary layer. In: Kozlov VV (ed) Laminar–Turbulent Transition, Springer–Verlag, Berlin, IUTAM Symposium, pp 115–123 Google Scholar
  20. Kaltenbach HJ, Janke G (2000) Direct numerical simulation of a flow separation behind a swept, rearward-facing step at Re H = 3000. Phys Fluids 12(9):2320–2337 ADSCrossRefGoogle Scholar
  21. Kozlov VV, Dovgal AV (eds) (1991) Separated flows and Jets, IUTAM Symposium, Springer–Verlag, Berlin Google Scholar
  22. Levchenko VY, Volodin AG, Gaponov SA (1975) Stability characteristics of boundary layers. Nauka. Sib. Otd., Novosibirsk, In Russian. Google Scholar
  23. Maucher U, Rist U, Wagner S (1994) Direct numerical simulation of airfoil separation bubbles. In: Wagner S, Hirschel EH, Périaux J, Piva R (eds) Computational Fluid Dynamics ’94, Wiley, New York, pp 471–477 Google Scholar
  24. Michalke A (1990) On the inviscid instability of wall-bounded velocity profiles close to separation. Z Flugwiss Weltraumforsch 14:24–31 Google Scholar
  25. Michalke A, Kozlov VV, Dovgal AV (1995) Contribution to the instability of laminar separating flows along axisymmetric bodies. Part 1: Theory. Eur J Mech B/Fluids 14(3):333–350 zbMATHGoogle Scholar
  26. Monkewitz PA, Huerre P (1982) Influence of the velocity ratio on the spatial instability of mixing layers. Phys Fluids 25(7):1137–1143 ADSCrossRefGoogle Scholar
  27. Nayfeh AH, Ragab SA, Al-Maaitah AA (1988) Effects of bulges on the stability of boundary layers. Phys Fluids 31(4):796–806 ADSCrossRefGoogle Scholar
  28. Nayfeh AH, Ragab SA, Masad JA (1990) Effect of a bulge on the subharmonic instability of boundary layers. Phys Fluids A 2(6):937–948 ADSCrossRefGoogle Scholar
  29. Rist U, Maucher U, Wagner S (1996) Direct numerical simulation of some fundamental problems related to transition in laminar separation bubbles. In: Désidéri JA, Hirsch C, Tallec PL, Pandolfi M, Périaux J (eds) Computational Fluid Dynamics ’96, Wiley, New York, pp 319–325 Google Scholar
  30. Sinha SN, Gupta AK, Oberai MM (1981) Laminar separating flow over backsteps and cavities. Part 1: Backsteps. AIAA J 19(12):1527–1530 ADSCrossRefGoogle Scholar
  31. Stewart PA, Smith FT (1987) Three-dimensional instabilities in steady and unsteady non-parallel boundary layers, including effects of Tollmien–Schlichting disturbances and cross flow. Proc R Soc Lond A 409:229–248 MathSciNetADSzbMATHCrossRefGoogle Scholar
  32. Taghavi H, Wazzan AR (1974) Spatial stability of some Falkner–Skan profiles with reversed flow. Phys Fluids 17(12):2181–2183 ADSzbMATHCrossRefGoogle Scholar

Further Reading

  1. Al-Maaitah AA, Nayfeh AH, Ragab SA (1990a) Effect of cooling on the stability of compressible subsonic flows over smooth humps and backward-facing steps. Phys Fluids A 2(3):381–389 ADSzbMATHCrossRefGoogle Scholar
  2. Al-Maaitah AA, Nayfeh AH, Ragab SA (1990b) Effect of suction on the stability of compressible subsonic flows over backward-facing steps. AIAA J 28(11):1916–1924 ADSzbMATHCrossRefGoogle Scholar
  3. Alam M, Sandham ND (2000) Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment. J Fluid Mech 410:1–28 ADSzbMATHCrossRefGoogle Scholar
  4. Alizard F, Cherubini S, Robinet JC (2009) Sensitivity and optimal forcing response in separated boundary layer flows. Phys Fluids 21(6):064108, 1–13 ADSCrossRefGoogle Scholar
  5. Allen T, Riley N (1995) Absolute and convective instabilities in separation bubbles. Aeronaut J 99:439–448 Google Scholar
  6. Arena AV, Mueller TJ (1980) Laminar separation, transition, and turbulent reattachment near the leading edge of airfoils. AIAA J 18(7):747–753 ADSCrossRefGoogle Scholar
  7. Barkley D, Gomes MGM, Henderson RD (2002) Three-dimensional instability in flow over a backward-facing step. J Fluid Mech 473:167–190 MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. Bestek H, Gruber K, Fasel H (1989) Self-excited unsteadiness of laminar separation bubbles caused by natural transition. In: The Prediction and Exploitation of Separated Flow, Roy. Aeronaut. Soc., London, pp 14.1–14.16 Google Scholar
  9. Bestek H, Gruber K, Fasel H (1993) Direct numerical simulation of unsteady separated boundary-layer flows over smooth backward-facing steps. In: Gersten K (ed) Physics of Separated Flows – Numerical, Experimental, and Theoretical Aspects, Notes on Numerical Fluid Mechanics, vol 40, Vieweg, Braunschweig, pp 73–80 Google Scholar
  10. Brendel M, Mueller TJ (1988) Boundary-layer measurements on an airfoil at low Reynolds numbers. J Aircraft 25(7):612–617 CrossRefGoogle Scholar
  11. Cebeci T, Egan DA (1989) Prediction of transition due to isolated roughness. AIAA J 27(7):870–875 ADSCrossRefGoogle Scholar
  12. Dallmann U, Herberg T, Gebing H, Su WH, Zhang HQ (1995) Flow field diagnostics: Topological flow changes and spatio-temporal flow structure. AIAA Paper 95–0791 Google Scholar
  13. van Dam CP, Elli S (1992) Simulation of nonlinear Tollmien–Schlichting wave growth through a laminar separation bubble. In: Hussaini MY, Kumar A, Streett CL (eds) Instability, Transition, and Turbulence, Springer–Verlag, Berlin, pp 311–321 Google Scholar
  14. Dini P, Selig MS, Maughmer MD (1992) Simplified linear stability transition prediction method for separated boundary layers. AIAA J 30(8):1953–1961 ADSCrossRefGoogle Scholar
  15. Dovgal AV, Sorokin AM (2001) Instability of a laminar separation bubble to vortex shedding. Thermophys Aeromech 8(2):189–197 Google Scholar
  16. Dovgal AV, Sorokin AM (2002) Experimental modelling of vortex shedding at flow separation behind a backward-facing step. Thermophys Aeromech 9(2):183–190 Google Scholar
  17. Dovgal AV, Kozlov VV, Michalke A (1994) Laminar boundary layer separation: Instability and associated phenomena. Progr Aerosp Sci 30:61–94 ADSCrossRefGoogle Scholar
  18. Drela M, Giles MB (1987) Viscous-inviscid analysis of transonic and low Reynolds number airfoils. AIAA J 25(10):1347–1355 ADSzbMATHCrossRefGoogle Scholar
  19. Eaton JK, Johnston JP (1981) A review of research on subsonic turbulent flow reattachment. AIAA J 19(9):1093–1100 ADSCrossRefGoogle Scholar
  20. Ehrenstein U, Gallaire F (2008) Two-dimensional global low-frequency oscillations in a separating boundary-layer flow. J Fluid Mech 614:315–327 MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. Fasel HF, Saric WS (eds) (2000) Laminar–Turbulent Transition, IUTAM Symposium, Springer–Verlag, Berlin Google Scholar
  22. Gates EM (1980) Observations of transition on some axisymmetric bodies. In: Eppler R, Fasel H (eds) Laminar–Turbulent Transition, Springer–Verlag, Berlin, IUTAM Symposium, pp 351–363 Google Scholar
  23. Hammond DA, Redekopp LG (1998) Local and global instability properties of separation bubbles. Eur J Mech B/Fluids 17(2):145–164 MathSciNetzbMATHCrossRefGoogle Scholar
  24. Hasan MAZ (1992) The flow over a backward-facing step under controlled perturbation: Laminar separation. J Fluid Mech 238:73–96 ADSCrossRefGoogle Scholar
  25. Hein S (2000) Linear and nonlinear nonlocal instability analysis for two-dimensional laminar separation bubbles. In: Fasel and Saric(2000), pp 681–686 Google Scholar
  26. Hein S, Theofilis V, Dallmann U (1998) Unsteadiness and three-dimensionality of steady two-dimensional laminar separation bubbles as result of linear instability mechanisms. IB 223-98 A 39, DLR, Göttingen Google Scholar
  27. Hetsch T, Rist U (2009) An analysis of the structure of laminar separation bubbles in swept infinite geometries. Eur J Mech B/Fluids 28:486–493 zbMATHCrossRefGoogle Scholar
  28. Horton HP (1967) A semi-empirical theory for the growth and bursting of laminar separation bubbles. CP 1073, Aeronaut. Research Council Google Scholar
  29. Hudy LM, Naguib A, Humphreys WM (2007) Stochastic estimation of a separated-flow field using wall-pressure-array measurements. Phys Fluids 19(2):024103, 1–18 ADSCrossRefGoogle Scholar
  30. van Ingen JL (1977) Transition, pressure gradient, suction, separation and stability theory. In: AGARD-CP-224 Google Scholar
  31. van Ingen JL (1991) Research on laminar separation bubbles at Delft University of Technology. In: Kozlov and Dovgal(1991), pp 537–556 Google Scholar
  32. Jones LE, Sandberg RD, Sandham ND (2008) Direct numerical simulations of forced and unforced separation bubbles on an airfoil at incidence. J Fluid Mech 602:175–207 ADSzbMATHCrossRefGoogle Scholar
  33. Kaiktsis L, Karniadakis GE, Orszag SA (1996) Unsteadiness and convective instabilities in two-dimensional flow over a backward-facing step. J Fluid Mech 321:157–187 ADSzbMATHCrossRefGoogle Scholar
  34. Kiya M (1989) Separation bubbles. In: Germain P, Piau M, Caillerie D (eds) Theoretical and Applied Mechanics, Elsevier, Amsterdam, pp 173–191 Google Scholar
  35. Klebanoff PS, Tidstrom KD (1972) Mechanism by which a two-dimensional roughness element induces boundary-layer transition. Phys Fluids 15(7):1173–1188 ADSCrossRefGoogle Scholar
  36. Kozlov VV, Dovgal AV (eds) (1991) Separated flows and Jets, IUTAM Symposium, Springer–Verlag, Berlin Google Scholar
  37. Leblanc P, Blackwelder R, Liebeck R (1991) Experimental results on laminar separation on two airfoils at low Reynolds numbers. In: Twenty-Ninth Aerospace Sciences Meeting, Reno, U.S.A. Google Scholar
  38. Marquet O, Lombardi M, Chomaz JM, Sipp D, Jacquin L (2009) Direct and adjoint global modes of a recirculation bubble: Lift-up and convective non-normalities. J Fluid Mech 622:1–21 MathSciNetADSzbMATHCrossRefGoogle Scholar
  39. Marquillie M, Ehrenstein U (2003) On the onset of nonlinear oscillations in a separating boundary-layer flow. J Fluid Mech 490:169–188 MathSciNetADSzbMATHCrossRefGoogle Scholar
  40. Marxen O, Lang M, Rist U, Wagner S (2003) A combined experimental/numerical study of unsteady phenomena in a laminar separation bubble. In: Flow, Turbulence, and Combustion, vol 71, Kluwer, Dordrecht, pp 133–146 Google Scholar
  41. Masad JA, Iyer V (1994) Transition prediction and control in subsonic flow over a hump. Phys Fluids 6(1):313–327 ADSzbMATHCrossRefGoogle Scholar
  42. Masad JA, Malik MR (1994) On the link between flow separation and transition onset. AIAA Paper 94–2370 Google Scholar
  43. Masad JA, Nayfeh AH (1992) Stability of separating boundary layers. In: Fourth Internat. Conf. Fluid Mechanics, Alexandria, vol 1, pp 261–278 Google Scholar
  44. Masad JA, Nayfeh AH (1993) The influence of imperfections on the stability of subsonic boundary layers. In: Ashpis DE, Gatski TB, Hirsh R (eds) Instabilities and Turbulence in Engineering Flows, Kluwer, Dordrecht, pp 65–82 CrossRefGoogle Scholar
  45. Michalke A (1991) On the instability of wall-boundary layers close to separation. In: Kozlov and Dovgal(1991), pp 557–564 Google Scholar
  46. Mueller TJ, Batill SM (1982) Experimental studies of separation on a two-dimensional airfoil at low Reynolds numbers. AIAA J 20(4):457–463 ADSCrossRefGoogle Scholar
  47. O’Meara MM, Mueller TJ (1987) Laminar separation bubble characteristics on an airfoil at low Reynolds numbers. AIAA J 25(8):1033–1041 ADSCrossRefGoogle Scholar
  48. Pauley LP, Moin P, Reynolds WC (1990) The structure of two-dimensional separation. J Fluid Mech 220:397–411 ADSCrossRefGoogle Scholar
  49. Rannacher J (1969) Untersuchung von geraden ebenen Flugelgittern im kritischen Reynoldszahlbereich. Kurzfassung in Maschinenbautechnik 18:2–10 Google Scholar
  50. Ripley MD, Pauley LL (1993) The unsteady structure of two-dimensional steady laminar separation. Phys Fluids A 5(12):3099–3106 ADSzbMATHCrossRefGoogle Scholar
  51. Rist U (1994) Nonlinear effects of 2D and 3D disturbances on laminar separation bubbles. In: Lin SP, Phillips WRC, Valentine DT (eds) Nonlinear Instability of Nonparallel Flows, Springer–Verlag, Berlin, IUTAM Symposium, pp 324–333 Google Scholar
  52. Rist U, Maucher U (1994) Direct numerical simulation of 2D and 3D instability waves in a laminar separation bubble. In: AGARD-CP-551 Application of Direct and Large Eddy Simulation to Transition and Turbulence, Chania, Crete, Greece, pp 34–1347 Google Scholar
  53. Smith FT, Bodonyi RJ (1985) On short-scale inviscid instabilities in flow past surface-mounted obstacles and other nonparallel motions. J Roy Aeronaut Soc 89:205–212 Google Scholar
  54. Spalart PR, Strelets MK (2000) Mechanisms of transition and heat transfer in a separation bubble. J Fluid Mech 403:329–349 ADSzbMATHCrossRefGoogle Scholar
  55. Tafti DK, Vanka SP (1991) A numerical study of flow separation and reattachment on a blunt plate. Phys Fluids A 3(7):1749–1759 ADSzbMATHCrossRefGoogle Scholar
  56. Theofilis V (2000) Global linear instabilities in laminar separated boundary layer flow. In: Fasel and Saric(2000), pp 663–668 Google Scholar
  57. Theofilis V (2003) Advances in global linear instability analysis of nonparallel and three-dimensional flows. Progr Aerosp Sci 39:249–315 ADSCrossRefGoogle Scholar
  58. Theofilis V, Hein S, Dallmann U (2000) On the origins of unsteadiness and three-dimensionality in a laminar separation bubble. Philos Trans R Soc Lond A 358:3229–3246 ADSzbMATHCrossRefGoogle Scholar
  59. Wang BJ, Bogucki DJ, Redekopp LG (2000) Transition in separated flows via global instability. In: Fasel and Saric(2000), pp 669–674 Google Scholar
  60. Ward JW (1963) The behaviour and effects of laminar separation bubbles on airfoils in incompressible flow. J Roy Aeronaut Soc 67:783–790 Google Scholar
  61. Watmuff JH (1999) Evolution of a wave packet into vortex loops in a laminar separation bubble. J Fluid Mech 397:119–169 MathSciNetADSzbMATHCrossRefGoogle Scholar
  62. Wee D, Yi T, Annaswamy A, Ghoniem AF (2004) Self-sustained oscillations and vortex shedding in backward-facing step flows: Simulation and linear instability analysis. Phys Fluids 16(9):3361–3373 ADSCrossRefGoogle Scholar
  63. Weibust E, Bertelrud A, Ridder SO (1987) Experimental investigation of laminar separation bubbles and comparison with theory. J Aircraft 24(5):291–297 ADSCrossRefGoogle Scholar
  64. Yang Z, Voke PR (2001) Large-eddy simulation of boundary-layer separation and transition at a change of surface curvature. J Fluid Mech 439:305–333 ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Andrey V. Boiko
    • 1
    Email author
  • Alexander V. Dovgal
    • 1
  • Genrih R. Grek
    • 1
  • Victor V. Kozlov
    • 1
  1. 1.Inst. Theoretical & Applied MechanicsRussian Academy of SciencesNovosibirskRussia

Personalised recommendations