Nonlinear effects during the laminar–turbulent transition

  • Andrey V. BoikoEmail author
  • Alexander V. Dovgal
  • Genrih R. Grek
  • Victor V. Kozlov
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 98)


There is a variety of nonlinear processes taking place at flow breakdown to turbulence. Competing with each other, they occur more or less individually only with special adjustment of the initial conditions. Below we consider some prototypical mechanisms of the laminar flow breakdown originating from the preceding amplification of linear instability waves and streaks in boundary layers.


Direct Numerical Simulation Separation Bubble Laminar Boundary Layer Turbulent Transition Secondary Instability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. Alfredsson PH, Bakchinov AA, Kozlov VV, Matsubara M (1996) Laminar–turbulent transition at a high level of a free stream turbulence. In: Duck PW, Hall P (eds) Nonlinear Instability and Transition in Three-Dimensional Boundary Layers, Kluwer, Dordrecht, Fluid Mechanics and its Application, pp 423–436 Google Scholar
  2. Arnal D (1992) Transition description and prediction. In: Pironneau O, Rodi W, Ryhming IL, Savill AM, Truong TV (eds) Numerical Simulation of Unsteady Flows and Transition to Turbulence, Cambridge University Press, Cambridge, pp 303–316 Google Scholar
  3. Bakchinov AA, Grek GR, Katasonov MM, Kozlov VV (1998) Experimental investigation of the interaction of longitudinal streaky structures with a high-frequency disturbance. Fluid Dyn 33(5):667–675 Google Scholar
  4. Berlin S, Wiegel M, Henningson DS (1999) Numerical and experimental investigations of oblique boundary layer transition. J Fluid Mech 393:23–57 ADSzbMATHCrossRefGoogle Scholar
  5. Boiko AV, Dovgal AV, Kozlov VV (1989) Nonlinear interactions between perturbations in transition to turbulence in the zone of laminar boundary-layer separation. Soviet J Appl Phys 3(2):46–52 Google Scholar
  6. Boiko AV, Dovgal AV, Simonov OA, Scherbakov VA (1991) Effects of laminar–turbulent transition in separation bubbles. In: Kozlov VV, Dovgal AV (eds) Separated Flows and Jets, Springer–Verlag, Berlin, IUTAM Symposium, pp 565–572 Google Scholar
  7. Boiko AV, Westin KJA, Klingmann BGB, Kozlov VV, Alfredsson PH (1994) Experiments in a boundary layer subjected to free stream turbulence. Part 2. The role of TS-waves in the transition process. J Fluid Mech 281:219–245 ADSCrossRefGoogle Scholar
  8. Chernoray VG, Bakchinov AA, Kozlov VV, Löfdahl L (2001) Experimental study of K-regime of breakdown in straight and swept wing boundary layers. Phys Fluids 13(7):2129–2132 ADSCrossRefGoogle Scholar
  9. Craik ADD (1971) Non-linear resonant instability in boundary layers. J Fluid Mech 50:393–413 ADSzbMATHCrossRefGoogle Scholar
  10. Kachanov YS (1994) Physical mechanisms of laminar-boundary-layer transition. Ann Rev Fluid Mech 26:411–482 MathSciNetADSCrossRefGoogle Scholar
  11. Klebanoff PS, Tidstrom KD, Sargent LM (1962) The three-dimensional nature of boundary-layer instability. J Fluid Mech 12:1–34 ADSzbMATHCrossRefGoogle Scholar
  12. Maslowe SA (1985) Shear flow instabilities and transition. In: Swinney HL, Golub JP (eds) Hydrodynamic Instabilities and the Transition to Turbulence, Topics in Applied Physics, vol 45, 2nd edn, Springer–Verlag, Berlin, chap 7, pp 181–228 Google Scholar
  13. Matsubara M, Kozlov VV, Alfredsson PH, Bakchinov AA, Westin KJA (1996) On flat plate boundary layer perturbations at high free stream turbulence level. In: Proc. Eighth Internat. Conf. on Methods of Aerophysical Research, RAS. Sib. Branch Inst. Theoret. Appl. Mech., Novosibirsk, vol 1, pp 174–179 Google Scholar
  14. Ramazanov MP (1985) Development of finite-amplitude disturbances in Poiseuille flow. In: Kozlov VV (ed) Laminar–Turbulent Transition, Springer–Verlag, Berlin, IUTAM Symposium, pp 183–190 Google Scholar
  15. Rist U, Müller K, Wagner S (1998) Visualisation of late-stage transitional structures in numerical data using vortex identification and feature extraction. In: Carlomango GM, Grant I (eds) Eighth International Symposium on Flow Visualisation, Published and distributed on CD by the editors, Sorrento, Paper No. 109. Google Scholar
  16. Saric WS, Kozlov VV, Levchenko VY (1984) Forced and unforced subharmonic resonance in boundary-layer transition. AIAA Paper 84–0007 Google Scholar
  17. Schlichting H, Gersten K (2000) Boundary layer theory, 8th edn. Springer–Verlag, Berlin zbMATHGoogle Scholar
  18. Schmid PJ, Henningson DS (2000) Stability and transition in shear flows. Springer–Verlag, Berlin Google Scholar
  19. Taylor GI (1936) Statistical theory of turbulence. V. Effects of turbulence on boundary layer. Theoretical discussion of relationship between scale of turbulence and critical resistance of sphere. Proc R Soc Lond A 156:307–317 ADSzbMATHCrossRefGoogle Scholar
  20. Zhigulev VN, Tumin AM (1987) Onset of turbulence. Dynamical theory of excitation and development of instabilities in boundary layers. Nauka. Sib. Otd., Novosibirsk, In Russian. Google Scholar

Further Reading

  1. Arnal D, Juillen JC (1977) Étude expérimentale et théorique de la transition de la couche limite. Rech Aérospat 2:75–88 Google Scholar
  2. Arnal D, Juillen JC (1978) Contribution expérimentale à l’étude de la réceptivité d’une couche limite laminaire, à la turbulence de l’écoulement général. CERT RT 1/5018 AYD, ONERA Google Scholar
  3. Arnal D, Michel R (eds) (1990) Laminar–Turbulent Transition, IUTAM Symposium, Springer–Verlag, Berlin Google Scholar
  4. Bake S, Kachanov YS, Fernholz HH (1996) Subharmonic K-regime of boundary-layer breakdown. In: Henkes RAWM, van Ingen JL (eds) Transitional Boundary Layers in Aerodynamics, Proc. Colloquium, Elsevier, Amsterdam, pp 81–88 Google Scholar
  5. Bake S, Fernholz HH, Kachanov YS (2000) Resemblance of K- and N-regimes of boundary-layer transition at late stages. Eur J Mech B/Fluids 19(1):1–22 zbMATHCrossRefGoogle Scholar
  6. Benney DJ, Bergeron EF (1968) A new class of nonlinear waves in parallel flows. Stud Appl Math 48(3):181–204 Google Scholar
  7. Benney DJ, Gustavsson LH (1981) A new mechanism for linear and nonlinear hydrodynamic stability. Stud Appl Math 64:185–209 MathSciNetzbMATHGoogle Scholar
  8. Berlin S, Lundbladh A, Henningson DS (1994) Spatial simulations of oblique transition in a boundary layer. Phys Fluids A 6(6):1949–1951 ADSCrossRefGoogle Scholar
  9. Bertolotti FP, Herbert T, Spallart PR (1992) Linear and nonlinear stability of the Blasius boundary layer. J Fluid Mech 242:441–474 MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. Cohen J, Breuer KS, Haritonidis JH (1991) On the evolution of a wave packet in a laminar boundary layer. Part 1. Weak disturbances. J Fluid Mech 225:575–606 ADSCrossRefGoogle Scholar
  11. Corke TC, Mangano RA (1989) Resonant growth of three-dimensional modes in transitioning boundary layers. J Fluid Mech 209:93–150 ADSCrossRefGoogle Scholar
  12. Dovgal AV, Boiko AV (2000) Effect of harmonic excitation on instability of laminar separation bubble on an airfoil. In: Fasel and Saric (2000), pp 675–680 Google Scholar
  13. Ehrenstein U, Koch W (1991) Three-dimensional wavelike equilibrium states in plane Poiseuille flow. J Fluid Mech 228:111–148 ADSzbMATHGoogle Scholar
  14. Elofsson PA, Alfredsson PH (1998) An experimental study of oblique transition in plane Poiseuille flow. J Fluid Mech 358:177–202 ADSCrossRefGoogle Scholar
  15. Elofsson PA, Alfredsson PH (2000) An experimental investigation of oblique transition in a Blasius boundary layer flow. Eur J Mech B/Fluids 19(5):615–636 zbMATHCrossRefGoogle Scholar
  16. Fasel HF, Saric WS (eds) (2000) Laminar–Turbulent Transition, IUTAM Symposium, Springer–Verlag, Berlin Google Scholar
  17. Fujimura K (1991) Method of centre manifold and multiple scales in the theory of weakly nonlinear stability of fluid motions. Proc R Soc Lond A 434:719–733 MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. Gaster M (1990) The nonlinear phase of wave growth leading to chaos and breakdown to turbulence in a boundary layer as an example of an open system. Proc R Soc Lond A 430:3–24 ADSCrossRefGoogle Scholar
  19. Gaster M, Grant T (1975) An experimental investigation of the formation and development of a wave-packet in a laminar boundary layer. Proc R Soc Lond A 347:253–269 ADSCrossRefGoogle Scholar
  20. Goldshtik MA, Shtern VN (1977) Hydrodynamic stability and turbulence. Nauka. Sib. Otd., Novosibirsk, in Russian. Google Scholar
  21. Goldstein ME, Choi SW (1989) Nonlinear evolution of interacting oblique waves on two-dimensional shear layers. J Fluid Mech 207:97–120, see also Corrigendum, J. Fluid Mech., 216, 659–663. MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. Goldstein ME, Lee SS (1992) Fully coupled resonant-triad interaction in an adverse-pressure-gradient boundary layer. J Fluid Mech 245:523–551 MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. Grek GR, Kozlov VV (1992) Interaction of Tollmien–Schlichting waves and localized disturbances. Sib Fiz-Techn Zh 34(5):68–76, in Russian. Google Scholar
  24. Grek GR, Kozlov VV, Ramazanov MP (1987) Laminar–turbulent transition at high free stream turbulence. Preprint 8–87, RAS. Sib. Branch Inst. Theoret. Appl. Mech., Novosibirsk, in Russian. Google Scholar
  25. Grek GR, Kozlov VV, Ramazanov MP (1989) Laminar–turbulent transition at high free stream turbulence in gradient flow. Izv Sib Otd Akad Nauk SSSR, Ser Tekhn Nauk 3:66–70 Google Scholar
  26. Grek GR, Kozlov VV, Ramazanov MP (1991a) Investigation of boundary layer stability in a gradient flow with a high degree of free-stream turbulence. Fluid Dyn 25(2):207–213 ADSCrossRefGoogle Scholar
  27. Grek HR, Dey J, Kozlov VV, Ramazanov MP, Tuchto ON (1991b) Experimental analysis of the process of the formation of turbulence in the boundary layer at higher degree of turbulence of windstream. Tech. Rep. 91–FM–2, Indian Institute of Science, Bangalor Google Scholar
  28. Haberman R (1972) Critical layers in parallel flows. Stud Appl Math 51(2):139–161 zbMATHGoogle Scholar
  29. Henningson DS, Johansson AV, Lunbladh A (1990) On the evolution of localized disturbances in laminar shear flows. In: Arnal and Michel (1990), pp 279–284 Google Scholar
  30. Herbert T (1983) On perturbation methods in nonlinear stability theory. J Fluid Mech 126:167–186 MathSciNetADSzbMATHCrossRefGoogle Scholar
  31. Herbert T (1983) Secondary instability of plane channel flow to subharmonic three-dimensional disturbances. Phys Fluids 26(4):871–874 ADSCrossRefGoogle Scholar
  32. Herbert T (1984) Analysis of the subharmonic route to transition in boundary layers. AIAA Paper 84–0009 Google Scholar
  33. Herbert T (1988) Secondary instability of boundary layers. Ann Rev Fluid Mech 20:487–526 ADSCrossRefGoogle Scholar
  34. Joseph DD (1976) Stability of Fluid Motion, Springer Tracts on Natural Philosophy, vol 1. Springer–Verlag, Berlin Google Scholar
  35. Kachanov YS (1987) On the resonant nature of the breakdown of a laminar boundary layer. J Fluid Mech 184:43–74 ADSCrossRefGoogle Scholar
  36. Kachanov YS (1994) Physical mechanisms of laminar-boundary-layer transition. Ann Rev Fluid Mech 26:411–482 MathSciNetADSCrossRefGoogle Scholar
  37. Kachanov YS, Levchenko VY (1984) The resonant interaction of disturbances at laminar–turbulent transition in a boundary layer. J Fluid Mech 138:209–247 ADSCrossRefGoogle Scholar
  38. Kachanov YS, Kozlov VV, Levchenko VY (1978) Nonlinear development of a wave in a boundary layer. Fluid Dyn 12(3):383–390 ADSCrossRefGoogle Scholar
  39. Kachanov YS, Kozlov VV, Levchenko VY (1982) Origin of Turbulence in Boundary Layer. Nauka. Sib. Otd., Novosibirsk Google Scholar
  40. Kachanov YS, Ryzhov OS, Smith FT (1993) Formation of solitons in transitional boundary layers: Theory and experiment. J Fluid Mech 251:273–297 MathSciNetADSCrossRefGoogle Scholar
  41. Kendall JM (1985) Experimental study of disturbances produced in a pre-transitional laminar boundary layer by weak free stream turbulence. AIAA Paper 85–1695 Google Scholar
  42. Kendall JM (1990) Boundary layer receptivity to freestream turbulence. AIAA Paper 90–1504 Google Scholar
  43. Kendall JM (1991) Studies on laminar boundary layer receptivity to freestream turbulence near a leading edge. In: Reda DC, Reed HL, Kobayashi R (eds) Boundary Layer Stability and Transition to Turbulence, ASME, pp 23–30 Google Scholar
  44. Kleiser L, Zang TA (1991) Numerical simulation of transition in wall-bounded shear flows. Ann Rev Fluid Mech 23:495–537 ADSCrossRefGoogle Scholar
  45. Koch W, Bertolotti FP, Stolte A, Hein S (2000) Nonlinear equilibrium solutions in a three-dimensional boundary layer and their secondary instability. J Fluid Mech 406:131–174 MathSciNetADSzbMATHCrossRefGoogle Scholar
  46. Kosorygin VS, Polyakov NP (1990) Laminar boundary layers in turbulent flows. In: Arnal and Michel (1990), pp 573–578 Google Scholar
  47. Kovasznay LS, Komoda H, Vasudeva BR (1962) Detailed flow field in transition. In: Proc. Heat Transfer and Fluid Mech. Institute, Stanford University, Stanford, pp 1–26 Google Scholar
  48. Li F, Malik MR (1995) Fundamental and subharmonic secondary instabilities of Görtler vortices. J Fluid Mech 297:77–100 MathSciNetADSzbMATHCrossRefGoogle Scholar
  49. Masad JA, Nayfeh AH (1992) Effect of a bulge on the subharmonic instability of subsonic boundary layers. AIAA J 30(7):1731–1737 ADSCrossRefGoogle Scholar
  50. Maucher U, Rist U, Wagner S (2000) Secondary disturbance amplification and transition in laminar separation bubbles. In: Fasel and Saric (2000), pp 657–662 Google Scholar
  51. Moston J, Stewart PA, Cowley SJ (2000) On the nonlinear growth of two-dimensional Tollmien–Schlichting waves in a flat-plate boundary layer. J Fluid Mech 425:259–300 MathSciNetADSzbMATHCrossRefGoogle Scholar
  52. Nagata M (1990) Three-dimensional finite-amplitude solutions in plane Couette flow: Bifurcation from infinity. J Fluid Mech 217:519–527 MathSciNetADSCrossRefGoogle Scholar
  53. Nayfeh AH, Ragab SA (1987) Effect of a bulge on the secondary instability of boundary layers. AIAA Paper 87–0045 Google Scholar
  54. Nishioka M, Asai M, Iida S (1980) An experimental investigation of the secondary instability. In: Eppler R, Fasel H (eds) Laminar–Turbulent Transition, Springer–Verlag, Berlin, IUTAM Symposium, pp 37–46 Google Scholar
  55. Orszag SA, Patera AT (1983) Secondary instability of wall-bounded shear flows. J Fluid Mech 128:347–385 ADSzbMATHCrossRefGoogle Scholar
  56. Rist U (1994) Nonlinear effects of 2D and 3D disturbances on laminar separation bubbles. In: Lin SP, Phillips WRC, Valentine DT (eds) Nonlinear Instability of Nonparallel Flows, Springer–Verlag, Berlin, IUTAM Symposium, pp 324–333 Google Scholar
  57. Rist U, Fasel HF (1995) Direct numerical simulation of controlled transition in a flat-plate boundary layer. J Fluid Mech 298:211–248 ADSzbMATHCrossRefGoogle Scholar
  58. Rist U, Maucher U (1994) Direct numerical simulation of 2D and 3D instability waves in a laminar separation bubble. In: AGARD-CP–551 Application of Direct and Large Eddy Simulation to Transition and Turbulence, Chania, Crete, Greece, pp 34.1–34.7 Google Scholar
  59. Rist U, Maucher U, Wagner S (1996) Direct numerical simulation of some fundamental problems related to transition in laminar separation bubbles. In: Désidéri JA, Hirsch C, Tallec PL, Pandolfi M, Périaux J (eds) Computational Fluid Dynamics ’96, Wiley, New York, pp 319–325 Google Scholar
  60. Rotenberry JM (1993) Finite amplitude steady waves in the Blasius boundary layer. Phys Fluids A 5(7):1840–1842 ADSzbMATHCrossRefGoogle Scholar
  61. Sandham ND, Kleiser L (1992) The late stages of transition to turbulence in channel flow. J Fluid Mech 245:319–348 ADSzbMATHCrossRefGoogle Scholar
  62. Schmid PJ, Henningson DS (1992) A new mechanism for rapid transition involving a pair of oblique waves. Phys Fluids A 4(9):1986–1989 MathSciNetADSCrossRefGoogle Scholar
  63. Sen PK, Venkateswarly D (1983) On the stability of plane Poiseuille flow to finite-amplitude disturbances, considering the higher-order Landau coefficients. J Fluid Mech 133:179–206 MathSciNetADSzbMATHCrossRefGoogle Scholar
  64. Smith FT (1987) Non-linear effects and non-parallel flows: The collapse of separated motion. In: Dwoyer DL, Hussaini MY (eds) Stability of Time Dependent and Spatially Varying Flows, Springer–Verlag, Berlin, pp 104–147 Google Scholar
  65. Stewartson K, Stewart JT (1971) A nonlinear instability theory for a wave system in plane Poiseuille flow. J Fluid Mech 48:529–545 MathSciNetADSzbMATHCrossRefGoogle Scholar
  66. Stuart JT (1960) On the nonlinear mechanisms of wave disturbances in stable and ubstable parallel flows. Part 1. The basic behaviour in plane Poiseuille flow. J Fluid Mech 9:353–370 MathSciNetzbMATHCrossRefGoogle Scholar
  67. Suder KL, O’Brien JE, Reshotko E (1988) Experimental study of bypass transition in a boundary layer. TM 100913, NASA Google Scholar
  68. Watson J (1960) On the nonlinear mechanisms of wave disturbances in stable and ubstable parallel flows. Part 2. The development of a solution for plane Poiseuille flow and Couette flow. J Fluid Mech 9:371–389 MathSciNetADSzbMATHCrossRefGoogle Scholar
  69. Westin KJA, Henkes RAWM (1997) Application of turbulence models to bypass transition. Trans ASME Ser I: J Fluids Eng 119(4):859–866 CrossRefGoogle Scholar
  70. Wray A, Hussaini MY (1984) Numerical experiments in boundary-layer stability. Proc R Soc Lond A 392:373–389 ADSzbMATHCrossRefGoogle Scholar
  71. Zahn JP, Toomre J, Spiegel EA, Gough DO (1974) Nonlinear cellular motions in Poiseuille channel flow. J Fluid Mech 64:319–345 ADSCrossRefGoogle Scholar
  72. Zelman MB, Maslennikova II (1993) Tollmien–Schlichting-wave resonant mechanism for subharmonic-type transition. J Fluid Mech 252:449–478 MathSciNetADSzbMATHCrossRefGoogle Scholar
  73. Zhigulev VN, Sidorenko NV (1985) On the issue of the nonlinear theory of the instability waves. In: Kozlov VV (ed) Laminar–Turbulent Transition, Springer–Verlag, Berlin, IUTAM Symposium, pp 81–86 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Andrey V. Boiko
    • 1
    Email author
  • Alexander V. Dovgal
    • 1
  • Genrih R. Grek
    • 1
  • Victor V. Kozlov
    • 1
  1. 1.Inst. Theoretical & Applied MechanicsRussian Academy of SciencesNovosibirskRussia

Personalised recommendations