Excitation of shear flow disturbances

  • Andrey V. BoikoEmail author
  • Alexander V. Dovgal
  • Genrih R. Grek
  • Victor V. Kozlov
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 98)


Turbulence in convectively unstable shear flows subjected to extrinsic dynamics results from amplification of their perturbations, which are generated by external disturbances and usually start to grow far upstream of the turbulent flow region. In the previous chapters, we considered consecutively the transitional events in far-field and near-field regions of disturbance sources and emphasized the importance of the regions for different laminar–turbulent transition scenarios. Now we concentrate on the disturbance excitation in shear layers. This process is referred to as ‘receptivity’ and is the main concern in this chapter.


Boundary Layer Instability Mode AIAA Paper Laminar Boundary Layer Instability Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. Aizin LB, Polyakov NF (1979) Generation of the Tollmien-Schlichting wave by sound at an isolated surface roughness. Preprint 17–79, RAS. Sib. Branch Inst. Theoret. Appl. Mech., Novosibirsk. In Russian. Google Scholar
  2. Alfredsson PH, Bakchinov AA, Kozlov VV, Matsubara M (1996) Laminar-turbulent transition at a high level of a free stream turbulence. In: Duck and Hall (1996), pp 423–436 Google Scholar
  3. Asai M, Kaneko M (1998) Experimental investigation of the receptivity of separated flow. In: Proc. Third Internat. Conf. Fluid Mechanics. Beijing Institute of Technology, Beijing, pp 231–237 Google Scholar
  4. Batchelor GK (1964) Axial flow in trailing line vortices. J Fluid Mech 20:645–658 MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. Bertolotti FP, Kendall JM (1997) Response of the boundary layer to controlled free-stream vortices of axial form. AIAA Paper 97–2018 Google Scholar
  6. Bippes H (1999) Basic experiments on transition in three-dimensional boundary layers dominated by crossflow instability. Progr Aerosp Sci 35(4):363–412 ADSCrossRefGoogle Scholar
  7. Bodonyi RJ, Welch WJC, Duck PW, Tadjfar M (1989) A numerical study of the interaction between unsteady free-stream disturbances and localized variations in surface geometry. J Fluid Mech 209:285–308 ADSzbMATHCrossRefGoogle Scholar
  8. Boiko AV (2000) Receptivity of boundary layers to free stream axial vortices. IB 223–2000 A10, German Aerospace Center (DLR) – Institute for Fluid Mechanics, Göttingen Google Scholar
  9. Boiko AV, Dovgal AV, Kozlov VV, Scherbakov VA (1990) Instability and receptivity of a boundary layer close to 2D surface imperfections. Izv Sib Otd Akad Nauk SSSR, Ser Tekhn Nauk 1:50–56 Google Scholar
  10. Choudhari M, Streett CL (1990) Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers. AIAA Paper 90–5258 Google Scholar
  11. Crouch JD (1992) Localized receptivity of boundary layers. Phys Fluids A 4(7):1408–1414 ADSzbMATHCrossRefGoogle Scholar
  12. Dovgal AV, Kozlov VV (1983) Influence of acoustic perturbations on the flow structure in a boundary layer with adverse pressure gradient. Fluid Dyn 18(2):205–209 ADSCrossRefGoogle Scholar
  13. Dovgal AV, Kozlov VV, Levchenko VY (1980) Experimental investigation into the reaction of a boundary layer to external periodic disturbances. Fluid Dyn 15(4):602–606 ADSCrossRefGoogle Scholar
  14. Duck PW, Hall P (eds) (1996) Nonlinear instability and transition in three-dimensional boundary layers. Fluid Mechanics and its Application. Kluwer, Dordrecht Google Scholar
  15. Gaponenko VR, Ivanov AV, Kachanov YS, Crouch JD (2002) Swept-wing boundary-layer receptivity to surface non-uniformities. J Fluid Mech 461:93–126 MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. Goldstein ME, Hultgren LS (1989) Boundary layer receptivity to long wave free-stream disturbances. Ann Rev Fluid Mech 21:137–166 MathSciNetADSCrossRefGoogle Scholar
  17. Grek GR, Kozlov VV, Ramazanov MP (1991) Laminar-turbulent transition at high free stream turbulence: Review. Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Tekhn. Nauk 106–138 Google Scholar
  18. Hill DC (1995) Adjoint systems and their role in the receptivity problem for boundary layer. J Fluid Mech 292:183–204 MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. Ivanov AV, Kachanov YS, Obolentseva TG, Michalke A (1998) Receptivity of the Blasius boundary layer to surface vibrations. Comparison of theory and experiment. In: Proc. Ninth Internat. Conf. on Methods of Aerophysical Research, vol 1. RAS. Sib. Branch Inst. Theoret. Appl. Mech., Novosibirsk, pp 93–98 Google Scholar
  20. Kachanov YS (2000) Three-dimensional receptivity of boundary layers. Eur J Mech B/Fluids 19(5):723–744 zbMATHCrossRefGoogle Scholar
  21. Kachanov YS, Kozlov VV, Levchenko VY (1979) Occurrence of Tollmien-Schlichting waves in the boundary layer under the effect of external perturbations. Fluid Dyn 13(5):85–94 CrossRefGoogle Scholar
  22. Mischenko DA (2010) Experimental investigation of generation and development of boundary-layer unsteady Görtler-instability modes. Doctoral thesis, Institute of Theroretical and Applied Mechanics SB RAS, Novosibirsk Google Scholar
  23. Morkovin MV (1968) Critical evaluation of transition from laminar to turbulent shear layers with emphasis on hypersonically traveling bodies. AFFDL TR 68–149 Google Scholar
  24. Nishioka M, Morkovin MV (1986) Boundary-layer receptivity to unsteady pressure gradients: Experiments and overview. J Fluid Mech 171:219–261 ADSCrossRefGoogle Scholar
  25. Saric W, Reed H, Kerschen E (2002) Boundary-layer receptivity to freestream disturbances. Ann Rev Fluid Mech 34:291–319 MathSciNetADSCrossRefGoogle Scholar
  26. Saric WS, Hoos JA, Radeztsky RH (1991) Boundary-layer receptivity of sound with roughness. In: Reda DC, Reed HL, Kobayashi R (eds) Boundary Layer Stability and Transition to Turbulence. ASME, pp 17–22 Google Scholar
  27. Schmid PJ, Henningson DS (2000) Stability and transition in shear flows. Springer–Verlag, Berlin Google Scholar
  28. Westin KJA, Bakchinov AA, Kozlov VV, Alfredsson PH (1998) Experiments on localized disturbances in a flat plate boundary layer. Part 1: The receptivity and evolution of a localized free stream disturbance. Eur J Mech B/Fluids 17(6):823–846 zbMATHCrossRefGoogle Scholar

Further Reading

  1. Bakchinov AA, Grek GR, Katasonov MM, Kozlov VV (1997) Experimental investigation of the structure and development characteristics of the localized disturbances in the flat plate boundary layer. Preprint 1–97, RAS. Sib. Branch Inst. Theoret. Appl. Mech., Novosibirsk. In Russian. Google Scholar
  2. Balakumar P, Hall P, Malik MR (1990) On the receptivity and non-parallel stability of traveling disturbances in rotating disk flow. ICASE Rep. 90–89 Google Scholar
  3. Bassom AP, Hall P (1994) The receptivity problem for O(1) wavelength Görtler vortices. Proc R Soc Lond A 446:449–516 ADSGoogle Scholar
  4. Bassom AP, Seddougui SO (1995) Receptivity mechanisms for Görtler vortex modes. Theoret Comput Fluid Dyn 7:317–339 ADSzbMATHCrossRefGoogle Scholar
  5. Berlin S, Henningson DS (1994) A study of boundary layer receptivity to disturbances in the free stream. In: Henningson DS (ed) Bypass Transition – Proceedings from a Mini-Workshop. Royal Institute of Technology, Stockholm, pp 43–49 Google Scholar
  6. Bertolotti FP (2000) Receptivity of three-dimensional boundary layers to localised wall roughness and suction. Phys Fluids 12(7):1799–1809 ADSCrossRefGoogle Scholar
  7. Bippes H (1977) Experimente zur Entwicklung der freien Wirbel hinter einem Rechteckflügel. Acta Mech 26:223–245 ADSCrossRefGoogle Scholar
  8. Bodonyi RJ, Duck PW (1992) Boundary layer receptivity to a wall suction control of Tollmien-Schlichting waves. Phys Fluids A 4(6):1206–1214 MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. Boiko AV, Chung YM, Sung HJ (1997) Spatial simulation of the instability of channel flow with local suction/blowing. Phys Fluids 9(11):3258–3266 ADSCrossRefGoogle Scholar
  10. Chernorai VG, Grek GR, Katasonov MM, Kozlov VV (2000) Generation of the localized disturbances by the vibrating surface. Thermophys Aeromech 7(3):329–339 Google Scholar
  11. Choudhari M (1993) Boundary-layer receptivity due to distributed surface imperfections of a deterministic or random nature. Theoret Comput Fluid Dyn 4:101–117 ADSzbMATHCrossRefGoogle Scholar
  12. Choudhari M, Streett CL (1992) A finite Reynolds-number approach for the prediction of boundary-layer receptivity in localized regions. Phys Fluids A 4(11):2495–2514 ADSzbMATHCrossRefGoogle Scholar
  13. Collis SS, Lele SK (1999) Receptivity to surface roughness near a swept wing leading edge. J Fluid Mech 380:141–168 ADSzbMATHCrossRefGoogle Scholar
  14. Crouch JD (1992) Non-localized receptivity of boundary layers. J Fluid Mech 244:567–581 MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. Crouch JD (1993a) Receptivity and the evolution of boundary-layer instabilities over short-scale waviness. Phys Fluids A 5(3):561–567 MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. Crouch JD (1993b) Receptivity of three-dimensional boundary layers. AIAA Paper 93–0074 Google Scholar
  17. Crouch JD (1994a) Distributed excitation of Tollmien-Schlichting waves by vortical free-stream disturbances. Phys Fluids A 6(1):217–223 ADSzbMATHCrossRefGoogle Scholar
  18. Crouch JD (1994b) Theoretical study on the receptivity of boundary layers. AIAA Paper 94–2223 Google Scholar
  19. Crouch JD, Bertolotti FP (1992) Nonlocalized receptivity of boundary layers to three-dimensional disturbances. AIAA Paper 92–0740 Google Scholar
  20. Crouch JD, Spalart PR (1995) A study of nonlinear and nonparallel effects on the localized receptivity of boundary layers. J Fluid Mech 290:29–37 ADSzbMATHCrossRefGoogle Scholar
  21. Denier JP, Hall P, Seddougui SO (1991) On the receptivity problem for Görtler vortices: Vortex motions induced by roughness. Philos Trans R Soc Lond A 335:51–85 MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. Deyhle H, Bippes H (1996) Disturbance growth in an unstable three-dimensional boundary layer and its dependence on environmental conditions. J Fluid Mech 316:73–113 ADSCrossRefGoogle Scholar
  23. Dovgal AV, Kozlov VV (1990) Hydrodynamic instability and receptivity of small scale separation regions. In: Arnal D, Michel R (eds) Laminar-Turbulent Transition IUTAM Symposium. Springer, Berlin, pp 523–531 Google Scholar
  24. Dovgal AV, Kozlov VV, Michalke A (1996) On disturbances excited by a point source in an axisymmetric laminar separation bubble. Eur J Mech B/Fluids 15(4):651–664 Google Scholar
  25. Duck PW, Hall P (eds) (1996) Nonlinear Instability and Transition in Three-Dimensional Boundary Layers. Fluid Mechanics and its Application. Kluwer, Dordrecht Google Scholar
  26. Elofsson PA, Alfredsson PH (2000) An experimental investigation of oblique transition in a Blasius boundary layer flow. Eur J Mech B/Fluids 19(5):615–636 zbMATHCrossRefGoogle Scholar
  27. Fasel H (1977) Reaktion von zweidimensionalen, laminaren, inkompressiblen Grenzschichten auf periodische Störungen in der Aussenströmung. Z Angew Math Mech 57:T180–T183 Google Scholar
  28. Fedorov AV (1984) Excitation of Tollmien-Schlichting waves in a boundary layer by a periodic external source located on the body surface. Fluid Dyn 19(6):888–893 ADSCrossRefGoogle Scholar
  29. Fedorov AV (1988) Excitation of waves of instability of the secondary flow in a boundary layer on a swept wing. J Appl Mech Tehn Phys 29(5):643–648 ADSCrossRefGoogle Scholar
  30. Gaponenko  VR, Ivanov  AV, Kachanov  YS (1995) Experimental study of cross-flow instability of a swept-wing boundary layer with respect to travelling waves. In: Kobayashi R (ed) Laminar-Turbulent Transition Springer–Verlag, Berlin, IUTAM Symposium. pp 373–380 Google Scholar
  31. Gaponenko VR, Ivanov AV, Kachanov YS (1996) Experimental study of 3D boundary-layer receptivity to surface vibration. In: Duck and Hall (1996), pp 389–398 Google Scholar
  32. Gaster M (1965) On the generation of spatially growing waves in a boundary layer. J Fluid Mech 22:433–441 MathSciNetADSzbMATHCrossRefGoogle Scholar
  33. Gaster M, Gupta TKS (1993) The generation of disturbances in a boundary layer by wall perturbations: The vibrating ribbon revisited once more. In: Ashpis DE, Gatski TB, Hirsh R (eds) Instabilities and Turbulence in Engineering Flows. Kluwer, Dordrecht, pp 31–50 CrossRefGoogle Scholar
  34. Gatski TB, Grosch C (1987) Numerical experiments in boundary-layer receptivity. In: Dwoyer DL, Hussaini MY (eds) Stability of Time Dependent and Spatially Varying Flows. Springer–Verlag, Berlin, pp 82–96 Google Scholar
  35. Gilev VM, Kozlov VV (1984) Excitation of Tollmien-Schlichting waves in the boundary layer on a vibrating surface. J Appl Mech Tehn Phys 25(6):874–877 ADSCrossRefGoogle Scholar
  36. Goldstein ME (1983) The evolution of Tollmien-Schlichting waves near a leading edge. J Fluid Mech 127:59–81 MathSciNetADSzbMATHCrossRefGoogle Scholar
  37. Goldstein ME (1984) Generation of instability waves in flows separating from smooth surfaces. J Fluid Mech 145:71–94 ADSzbMATHCrossRefGoogle Scholar
  38. Goldstein ME (1985) Scattering of acoustic waves into Tollmien-Schlichting waves by small streamwise variations in surface geometry. J Fluid Mech 154:509–529 ADSzbMATHCrossRefGoogle Scholar
  39. Goldstein ME, Hultgren LS (1989) Boundary layer receptivity to long wave free-stream disturbances. Ann Rev Fluid Mech 21:137–166 MathSciNetADSCrossRefGoogle Scholar
  40. Goldstein ME, Leib SJ, Cowley SJ (1987) Generation of Tollmien-Schlichting waves on interactive marginally separated flows. J Fluid Mech 181:485–517 ADSzbMATHCrossRefGoogle Scholar
  41. Hall P (1990) Görtler vortices in growing boundary layers: The leading edge receptivity problem, linear growth and the nonlinear breakdown stage. Mathematika 37:151–189 MathSciNetzbMATHCrossRefGoogle Scholar
  42. Heinrich RA, Choudhari M, Kerschen EJ (1988) A comparison of boundary layer receptivity mechanisms. AIAA Paper 88–3758 Google Scholar
  43. Herbert T, Lin N (1993) Studies of boundary-layer receptivity with parabolized stability equations. AIAA Paper 93–3053 Google Scholar
  44. Hultgren LS, Gustavsson LH (1981) Algebraic growth of disturbances in a laminar boundary layer. Phys Fluids 24(6):1000–1004 ADSzbMATHCrossRefGoogle Scholar
  45. Ivanov AV, Kachanov YS, Koptsev DB (1994) An experimental investigation of instability wave excitation in three-dimensional boundary layer at acoustic wave scattering on a vibrator. Thermophys Aeromech 4(4):359–372 Google Scholar
  46. Kachanov YS (1996) Generation, development and interaction of instability modes in swept-wing boundary layer. In: Duck and Hall (1996), pp 115–132 Google Scholar
  47. Kachanov YS, Kozlov VV, Levchenko VY (1975) Generation and development of small-amplitude disturbances in a laminar boundary layer in the presence of an acoustic field. Izv Sib Otd Akad Nauk SSSR, Ser Tekhn Nauk 3(13):18–26 Google Scholar
  48. Kachanov YS, Kozlov VV, Levchenko VY (1979) The development of small-amplitude oscillations in a laminar boundary layer. Fluid Mech – Soviet Res 8(2):152–156 Google Scholar
  49. Kachanov YS, Kozlov VV, Levchenko VY, Maksimov VP (1979b) Transformation of external disturbances into the boundary layer waves. In: Proc. Sixth Intern. Conf. on Numerical Methods in Fluid Dyn., Springer–Verlag, Berlin, Lecture Notes in Physics, 19, pp 299–307 CrossRefGoogle Scholar
  50. Kachanov YS, Kozlov VV, Levchenko VY (1982) Origin of Turbulence in Boundary Layer. Nauka. Sib. Otd., Novosibirsk Google Scholar
  51. Kerschen EJ (1991) Linear and non-linear receptivity to vortical freestream disturbances. In: Reda DC, Reed HL, Kobayashi R (eds) Boundary Layer Stability and Transition to Turbulence. ASME, pp 43–48 Google Scholar
  52. King RA, Breuer KS (2001) Acoustic receptivity and evolution of two-dimensional and oblique disturbances in a Blasius boundary layer. J Fluid Mech 432:69–90 ADSzbMATHGoogle Scholar
  53. Kozlov VV, Ryzhov OS (1990) Receptivity of boundary layers: Asymptotic theory and experiment. Proc R Soc Lond A 429:341–373 MathSciNetADSCrossRefGoogle Scholar
  54. Leehey P, Shapiro P (1980) Leading edge effect in laminar boundary layer excitation by sound. In: Eppler R, Fasel H (eds) Laminar–Turbulent Transition, Springer–Verlag, Berlin, IUTAM Symposium, pp 321–331 Google Scholar
  55. Lindors M, Laine S (1976) Numerical solution of the Navier-Stokes equations for unsteady boundary-layer flows past a wave-like bulge on a flat plate. Lect Notes Phys 59:293–299 ADSCrossRefGoogle Scholar
  56. Luchini P, Bottaro A (1998) Görtler vortices: A backward in time approach to the receptivity problem. J Fluid Mech 363:1–23 MathSciNetADSzbMATHCrossRefGoogle Scholar
  57. Maksimov VP (1979) Origin of Tollmien-Schlichting waves in oscillating boundary layers. In: Levchenko VY (ed) Development of Disturbances in Boundary Layer. RAS. Sib. Branch Inst. Theoret. Appl. Mech., Novosibirsk, pp 68–75. In Russian. Google Scholar
  58. Michalke A (1993) On the receptivity of a compressible two-dimensional vortex sheet close to a wall for various types of excitation. Eur J Mech B/Fluids 12(4):421–445 MathSciNetzbMATHGoogle Scholar
  59. Michalke A (1995) Receptivity of axisymmetric boundary layers due to excitation by a Dirac point source at the wall. Eur J Mech B/Fluids 14(4):373–393 MathSciNetzbMATHGoogle Scholar
  60. Michalke A (1997) Excitation of small disturbances by a Dirac line source at the wall and their growth in a decelerated laminar boundary layer. Eur J Mech B/Fluids 16(1):17–37 MathSciNetzbMATHGoogle Scholar
  61. Michalke A, Al-Maaitah AA (1992) On the receptivity of the unstable wall boundary layer along a surface hump excited by a 2-D Dirac source at the wall. Eur J Mech B/Fluids 11(5):521–542 zbMATHGoogle Scholar
  62. Müller B, Bippes H (1988) Experimental study of instability modes in a three-dimensional boundary layer. In: AGARD-CP-438 Fluid Dynamics of Three-Dimensional Turbulent Shear Flows and Transition, Chismet, Turkey, pp 13.1–13.15 Google Scholar
  63. Murdock JW (1980) The generation of Tollmien-Schlichting waves by a sound wave. Proc R Soc Lond A 372:517–534 ADSCrossRefGoogle Scholar
  64. Ng LL, Crouch JD (1999) Roughness-induced receptivity to crossflow vortices on a swept wing. Phys Fluids 11(2):432–438 ADSzbMATHCrossRefGoogle Scholar
  65. Polyakov NF (1975) Induction of hydrodynamic waves in laminar boundary layer by streamwise acoustic field. In: Proc. Symp. on Physics of Acousto-Hydrodynamic Phenomena. Nauka, Moscow, pp 216–223. In Russian. Google Scholar
  66. Rogler HL, Reshotko E (1975) Disturbances in a boundary layer introduced by a low intensity array of vortices. SIAM J Appl Math 28(2):431–462 ADSzbMATHCrossRefGoogle Scholar
  67. Rothmayer AP, Smith FT (1998) High Reynolds number asymptotic theories. In: Johnson RW (ed) The Handbook of Fluid Dynamics, Springer–Verlag, Berlin, chap 23–25 pp 23.1–25.26. Google Scholar
  68. Ruban AI (1985) On the generation of Tollmien-Schlichting waves by sound. Fluid Dyn 19(5):709–716 ADSCrossRefGoogle Scholar
  69. Saric W, Reed H, Kerschen E (1994) Leading edge receptivity to sound: Experiments, DNS, and theory. AIAA Paper 94–2222 Google Scholar
  70. Saric WS (1990) Low-speed experiments: Requirements for stability measurements. In: Hussaini MY, Voight RG (eds) Instability and Transition, Springer–Verlag, Berlin, ICASE/NASA LaRC Series, vol 1, pp 162–172 Google Scholar
  71. Saric WS, White EB, Reed HL (1999) Boundary-layer receptivity to freestream disturbances and its role in transition. AIAA Paper 99–3788 Google Scholar
  72. Shapiro  PJ (1977)  The  influence  of  sound  upon  laminar  boundary  layer  instability. Tech. Rep. 83458-83560-1, Mass. Inst. Technol., Cambridge, Acoustic and Vibration Lab., See also NTIS AD-A046057. Google Scholar
  73. Sidorenko NV, Erofeev EA (1985) Interaction  of  vortex  disturbances  and  boundary layer on blunt bodies. In: Kozlov VV (ed) Laminar–Turbulent Transition, Springer–Verlag, Berlin, IUTAM Symposium, pp 261–266 Google Scholar
  74. Spalart PR (1993) Numerical study of transition induced by suction devices. In: So RMC, Speziale CG, Launder BE (eds) Near-Wall Turbulent Flows. Elsevier, Amsterdam, pp 849–858 Google Scholar
  75. Spiridonov AN, Chernoray VG (2000) Generation and development of disturbances by a surface vibration in a boundary layer with a pressure gradient. In: Proc. Seventh Internat. Conf. Stability of Homogeneous and Heterogeneous Fluids, Novosibirsk, pp 165–167. In Russian. Google Scholar
  76. Takagi S, Saric WS, Radeztsky RH (1991) Effect of sound and micro-sized roughness on crossflow dominated transition. Bull Amer Phys Soc 36(10):2630 Google Scholar
  77. Tam CKW (1978) Excitation of instability waves in a two-dimensional shear layer by sound. J Fluid Mech 89:357–371 MathSciNetADSzbMATHCrossRefGoogle Scholar
  78. Tam CKW (1981) The excitation of Tollmien-Schlichting waves in low subsonic boundary layers by free stream sound waves. J Fluid Mech 109:483–501 ADSzbMATHCrossRefGoogle Scholar
  79. Terent’ev ED (1984) A linear problem on a vibrator oscillating harmonically at supercritical frequencies in a subsonic boundary layer. Prikl Mat Mekh 48(2):264–272 Google Scholar
  80. Thomas ASW, Lekoudis SG (1978) Sound and a Tollmien–Schlichting wave in a Blasius boundary layer. Phys Fluids 21(11):2112–2113 ADSCrossRefGoogle Scholar
  81. Tumin A (1996) Receptivity of pipe Poiseuille flow. J Fluid Mech 315:119–137 ADSzbMATHCrossRefGoogle Scholar
  82. Wu X (2001) Receptivity of boundary layers with distributed roughness to vortical and acoustic disturbances: A second-order asymptotic theory and comparison with experiments. J Fluid Mech 431:91–133 ADSzbMATHCrossRefGoogle Scholar
  83. Yang ZY, Voke PR (1991) Numerical simulation of transition under turbulence. Tech. Rep. ME–FD/91.01, Department of Mechanical Engineering, University of Surrey, U.K. Google Scholar
  84. Zavolskiy NA, Reutov VP, Rybushkina GV (1983) Excitation of Tollmien–Schlichting waves by acoustic and vortex disturbance scattering in boundary layer on a wavy surface. J Appl Mech Tehn Phys 24(3):355–361 ADSCrossRefGoogle Scholar
  85. Zhigulev VN, Tumin AM (1987) Onset of turbulence. Dynamical theory of excitation and development of instabilities in boundary layers. Nauka. Sib. Otd., Novosibirsk. In Russian. Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Andrey V. Boiko
    • 1
    Email author
  • Alexander V. Dovgal
    • 1
  • Genrih R. Grek
    • 1
  • Victor V. Kozlov
    • 1
  1. 1.Inst. Theoretical & Applied MechanicsRussian Academy of SciencesNovosibirskRussia

Personalised recommendations