Epigenome Changes During Development

  • Gavin KelseyEmail author


Epigenetic modifications accomplish the functional compartmentalisation of our genome. They ensure a high level of compaction of our DNA in a manner that nonetheless allows genes vital to given cell types to be expressed appropriately whilst sequestering away silent genes. The stability of epigenetic modifications provides long term memory in phenomena such as X-chromosome inactivation in females and genomic imprinting, but epigenetic states must also be dynamic as they are intimately involved in establishing the gene expression programmes that define cell lineage and are required to register changes in the environment. In this chapter, I shall describe the major epigenomic events that occur during mammalian development, from the specification of germ cells, to how the epigenome differences of the gametes are resolved at fertilisation, and how epigenomic events contribute to and reinforce lineage determination events. The advent of genome-wide profiling technologies is providing us with an unprecedented opportunity to investigate the scale of epigenomic changes during development and differentiation and how epigenomes are altered in disease.


Germ Cell Histone Modification Imprint Gene Gene Expression Programme Inner Cell Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



agouti viable yellow allele


bisulphite whole genome sequencing


bone morphogenic protein 4


v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog


co-activator associated arginine methyltransferase 1


caudal type homeobox 2


CXXC finger protein 1


chromatin immunopreciptation combined with next generation sequencing


DNA methyltransferase 1


DNA methyltransferase 3a


DNA methyltransferase 3b


DNA methyltransferase 3-like


differentially methylated region (of an imprinted gene)


euchromatic histone methyltransferase 2


ETS-related family transcription factor 5




embryonic stem


Enhancer of zeste homologue 2


germ cells


histone 1 variant T2


histone 1 variant LS1


histone H2


histone 2a variant Z


di-methylated H2A arginine 3


histone H3


histone 3 variant 3


H3 lysine 4


mono-/di- or tri-methylated H3 lysine 4


acetylated H3 lysine 9


mono-/di- or tri-methylated H3 lysine 9


acetylated H3 lysine 18


tri-methylated H3 lysine 37


tri-methylated H3 lysine 36


tri-methylated H4 lysine 20


histone H4


di-methylated H4 arginine 3


intracisternal A particle


inner cell mass


imprinting control region


insulin-like growth factor 2 gene


induced pluripotential stem cells


KRAB (Krüppel-associated box)-associated protein 1


lysine (K)-specific demethyase 1B


lysine (K)-specific demethyase 2A


Krüppel-like factor 2


long terminal repeat


methylcytosine immunoprecipitation combined with microarray hybridisation


National Institutes of Health


NLR family Pyrin domain containing protein 2


NLR family Pyrin domain containing protein 7


Polycomb group


primordial germ cells


peroxisome proliferator-activated receptor alpha


Polycomb group (PcG) repressor complex 2


PR domain containing 1


PR domain containing protein 9


PR domain containing protein 14


protein arginine methyltransferase 5


RNA-directed DNA methylation


SRY (sex determining region Y)-box 2


suppressor of variegation 3-9 homolog 1 & 2




ten-eleven translocation 5mc-hydrolase 1


ten-eleven translocation 5mc-hydrolase 3

TNP1 & 2

transition protein 1 & 2


ubiquitin-like containing PHD and RING finger domains 1


zinc-finger protein 57






  1. 1.
    Sasaki H, Matsui Y (2008) Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat Rev Genet 9:129–140PubMedCrossRefGoogle Scholar
  2. 2.
    Hemberger M, Dean W, Reik W (2009) Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington’s canal. Nat Rev Mol Cell Biol 10:526–537PubMedCrossRefGoogle Scholar
  3. 3.
    Hajkova P (2010) Epigenetic reprogramming–taking a lesson from the embryo. Curr Opin Cell Biol 22:342–350PubMedCrossRefGoogle Scholar
  4. 4.
    Ferguson-Smith AC, Surani MA (2001) Imprinting and the epigenetic asymmetry between parental genomes. Science 293:1086–1089PubMedCrossRefGoogle Scholar
  5. 5.
    Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560PubMedCrossRefGoogle Scholar
  6. 6.
    Bock C, Tomazou EM, Brinkman AB, Müller F, Simmer F, Gu H et al (2010) Quantitative comparison of genome-wide DNA methylation mapping technologies. Nat Biotechnol 28:1106–1114PubMedCrossRefGoogle Scholar
  7. 7.
    Hayashi K, de Sousa Lopes SM, Surani MA (2007) Germ cell specification in mice. Science 316:394–396PubMedCrossRefGoogle Scholar
  8. 8.
    Saitou M, Barton SC, Surani MA (2002) A molecular programme for the specification of germ cell fate in mice. Nature 418:293–300PubMedCrossRefGoogle Scholar
  9. 9.
    Ohinata Y, Payer B, O’Carroll D, Ohinata Y, Surani MA (2005) Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436:207–213PubMedCrossRefGoogle Scholar
  10. 10.
    Ancelin K, Lange UC, Hajkova P, Schneider R, Bannister AJ, Kouzarides T et al (2006) Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells. Nat Cell Biol 8:623–630PubMedCrossRefGoogle Scholar
  11. 11.
    Yamaji M, Seki Y, Kurimoto K, Yabuta Y, Yuasa M, Shigeta M et al (2008) Critical function of Prdm14 for the establishment of the germ cell lineage in mice. Nat Genet 40:1016–1022PubMedCrossRefGoogle Scholar
  12. 12.
    Seki Y, Hayashi K, Itoh K, Mizugaki M, Saitou M, Matsui Y (2005) Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Dev Biol 278:440–458PubMedCrossRefGoogle Scholar
  13. 13.
    Hajkova P, Ancelin K, Waldmann T, Lacoste N, Lange UC, Cesari F et al (2008) Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature 452:877–881PubMedCrossRefGoogle Scholar
  14. 14.
    Santos F, Dean W (2004) Epigenetic reprogramming during early development in mammals. Reproduction 127(6):643–651PubMedCrossRefGoogle Scholar
  15. 15.
    Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W et al (2002) Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 117:15–23PubMedCrossRefGoogle Scholar
  16. 16.
    Lane N, Dean W, Erhardt S, Hajkova P, Surani A, Walter J et al (2003) Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 35:88–93PubMedCrossRefGoogle Scholar
  17. 17.
    Hajkova P, Jeffries SJ, Lee C, Miller N, Jackson SP, Surani MA (2010) Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science 329:78–82PubMedCrossRefGoogle Scholar
  18. 18.
    Popp C, Dean W, Feng S, Cokus SJ, Andrews S, Pellegrini M et al (2010) Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature 463:1101–1105PubMedCrossRefGoogle Scholar
  19. 19.
    Lucifero D, Mann MR, Bartolomei MS, Trasler JM (2004) Gene-specific timing and epigenetic memory in oocyte imprinting. Hum Mol Genet 13:839–849PubMedCrossRefGoogle Scholar
  20. 20.
    Hiura H, Obata Y, Komiyama J, Shirai M, Kono T (2006) Oocyte growth-dependent progression of maternal imprinting in mice. Genes Cells 11:353–361PubMedCrossRefGoogle Scholar
  21. 21.
    Bourc’his D, Xu GL, Lin CS, Bollman B, Bestor TH (2001) Dnmt3L and the establishment of maternal genomic imprints. Science 294:2536–2539PubMedCrossRefGoogle Scholar
  22. 22.
    Hata K, Okano M, Lei H, Li E (2002) Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129:1983–1993PubMedGoogle Scholar
  23. 23.
    Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E et al (2004) Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429:900–903PubMedCrossRefGoogle Scholar
  24. 24.
    Kaneda M, Hirasawa R, Chiba H, Okano M, Li E, Sasaki H (2010) Genetic evidence for Dnmt3a-dependent imprinting during oocyte growth obtained by conditional knockout with Zp3-Cre and complete exclusion of Dnmt3b by chimera formation. Genes Cells 15:169–179CrossRefGoogle Scholar
  25. 25.
    Smallwood SA, Tomizawa S, Krueger F, Ruf N, Carli N, Sato S et al (2011) Dynamic CpG island methylation landscape in oocytes and its fate in preimplantation embryos. Nat Genet. 43:811–814Google Scholar
  26. 26.
    Tomizawa S, Kobayashi H, Watanabe T, Andrews S, Hata K, Kelsey G et al (2011) Dynamic stage-specific changes in imprinted differentially methylated regions during early mammalian development and prevalence of non-CpG methylation in oocytes. Development 138:811–820PubMedCrossRefGoogle Scholar
  27. 27.
    Ooi SK, Qiu C, Bernstein E, Li K, Jia D, Yang Z et al (2007) DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448:714–71PubMedCrossRefGoogle Scholar
  28. 28.
    Zhang Y, Jurkowska R, Soeroes S, Rajavelu A, Dhayalan A, Bock I et al (2010) Chromatin methylation activity of Dnmt3a and Dnmt3a/3 L is guided by interaction of the ADD domain with the histone H3 tail. Nucleic Acids Res 38:4246–4253PubMedCrossRefGoogle Scholar
  29. 29.
    Ciccone DN, Su H, Hevi S, Gay F, Lei H, Bajko J et al (2009) KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature 461:415–418PubMedCrossRefGoogle Scholar
  30. 30.
    Chotalia M, Smallwood SA, Ruf N, Dawson C, Lucifero D, Frontera M et al (2009) Transcription is required for establishment of germline methylation marks at imprinted genes. Genes Dev 23:105–117PubMedCrossRefGoogle Scholar
  31. 31.
    Murdoch S, Djuric U, Mazhar B, Seoud M, Khan R, Kuick R et al (2006) Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet 38:300–302PubMedCrossRefGoogle Scholar
  32. 32.
    Meyer E, Lim D, Pasha S, Tee LJ, Rahman F, Yates JRW et al (2009) Germline mutation in NLRP2 (NALP2) in a familial imprinting disorder (Beckwith-Wiedemann Syndrome). PLoS Genet 5:e1000423PubMedCrossRefGoogle Scholar
  33. 33.
    Davis TL, Yang GJ, McCarrey JR, Bartolomei MS (2000) The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development. Hum Mol Genet 9:2885–2894PubMedCrossRefGoogle Scholar
  34. 34.
    Ariel M, Cedar H, McCarrey J (1994) Developmental changes in methylation of spermatogenesis-specific genes include reprogramming in the epididymis. Nat Genet 7:59–63PubMedCrossRefGoogle Scholar
  35. 35.
    Oakes CC, La Salle S, Smiraglia DJ, Robaire B, Trasler JM (2007) Developmental acquisition of genome-wide DNA methylation occurs prior to meiosis in male germ cells. Dev Biol 307:368–379PubMedCrossRefGoogle Scholar
  36. 36.
    Kato Y, Kaneda M, Hata K, Kumaki K, Hisano M, Kohara Y et al (2007) Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum Mol Genet 16:2272–2280PubMedCrossRefGoogle Scholar
  37. 37.
    Kota SK, Feil R (2010) Epigenetic transitions in germ cell development and meiosis. Dev Cell 19:675–686PubMedCrossRefGoogle Scholar
  38. 38.
    Aravin AA, Sachidanandam R, Bourc’his D, Schaefer C, Pezic D, Toth KF et al (2008) A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell 31:785–799PubMedCrossRefGoogle Scholar
  39. 39.
    Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Takamatsu K, Chuma S, Kojima-Kita K et al (2010) DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev 22:908–917CrossRefGoogle Scholar
  40. 40.
    Watanabe T, Tomizawa S, Mitsuya K, Totoki Y, Yamamoto Y, Kuramochi-Miyagawa S et al (2011) Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus. Science 332:848–852PubMedCrossRefGoogle Scholar
  41. 41.
    Borgel J, Guibert S, Li Y, Chiba H, Schübeler D, Sasaki H et al (2010) Targets and dynamics of promoter DNA methylation during early mouse development. Nat Genet 42:1093–1100PubMedCrossRefGoogle Scholar
  42. 42.
    Weber M, Hellmann I, Stadler MB, Ramos L, Pääbo S, Rebhan M et al (2007) Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 39:457–466PubMedCrossRefGoogle Scholar
  43. 43.
    Schulz R, Proudhon C, Bestor TH, Woodfine K, Lin CS, Lin SP et al (2010) The parental non-equivalence of imprinting control regions during mammalian development and evolution. PLoS Genet 6:e1001214PubMedCrossRefGoogle Scholar
  44. 44.
    Flanagan JM, Popendikyte V, Pozdniakovaite N, Sobolev M, Assadzadeh A, Schumacher A et al (2006) Intra- and interindividual epigenetic variation in human germ cells. Am J Hum Genet 79:67–84PubMedCrossRefGoogle Scholar
  45. 45.
    Kobayashi H, Hiura H, John RM, Sato A, Otsu E, Kobayashi N et al (2009) DNA methylation errors at imprinted loci after assisted conception originate in the parental sperm. Eur J Hum Genet 17:1582–1591PubMedCrossRefGoogle Scholar
  46. 46.
    Poplinski A, Tüttelmann F, Kanber D, Horsthemke B, Gromoll J (2010) Idiopathic male infertility is strongly associated with aberrant methylation of MEST and IGF2/H19 ICR1. Int J Androl 33:642–649PubMedGoogle Scholar
  47. 47.
    Kimmins S, Sassone-Corsi P (2005) Chromatin remodelling and epigenetic features of germ cells. Nature 434:583–589PubMedCrossRefGoogle Scholar
  48. 48.
    Hayashi K, Yoshida K, Matsui Y (2005) A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature 438:374–378PubMedCrossRefGoogle Scholar
  49. 49.
    Tachibana M, Nozaki M, Takeda N, Shinkai Y (2007) Functional dynamics of H3K9 methylation during meiotic prophase progression. EMBO J 26:3346–3359PubMedCrossRefGoogle Scholar
  50. 50.
    Peters AH, O’Carroll D, Scherthan H, Mechtler K, Sauer S, Schöfer C et al (2001) Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107:323–337PubMedCrossRefGoogle Scholar
  51. 51.
    Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR (2009) Distinctive chromatin in human sperm packages genes for embryo development. Nature 460:473–478PubMedGoogle Scholar
  52. 52.
    Brykczynska U, Hisano M, Erkek S, Ramos L, Oakeley EJ, Roloff TC et al (2010) Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol 17:679–687PubMedCrossRefGoogle Scholar
  53. 53.
    Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li R et al (2010) Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143:1084–1096PubMedCrossRefGoogle Scholar
  54. 54.
    Santos F, Peters AH, Otte AP, Reik W, Dean W (2005) Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Dev Biol 280:225–236PubMedCrossRefGoogle Scholar
  55. 55.
    Puschendorf M, Terranova R, Boutsma E, Mao X, Isono K, Brykczynska U et al (2008) PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nat Genet 40:411–420PubMedCrossRefGoogle Scholar
  56. 56.
    Terranova R, Yokobayashi S, Stadler MB, Otte AP, van Lohuizen M, Orkin SH et al (2008) Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos. Dev Cell 15:668–679PubMedCrossRefGoogle Scholar
  57. 57.
    Mayer W, Niveleau A, Walter J, Fundele R, Haaf T (2000) Demethylation of the zygotic paternal genome. Nature 403:501–502PubMedCrossRefGoogle Scholar
  58. 58.
    Oswald J, Engemann S, Lane N, Mayer W, Olek A, Fundele R et al (2000) Active demethy­lation of the paternal genome in the mouse zygote. Curr Biol 10:475–478PubMedCrossRefGoogle Scholar
  59. 59.
    Santos F, Hendrich B, Reik W, Dean W (2002) Dynamic reprogramming of DNA methy­lation in the early mouse embryo. Dev Biol 241:172–182PubMedCrossRefGoogle Scholar
  60. 60.
    Okada Y, Yamagata K, Hong K, Wakayama T, Zhang Y (2010) A role for the elongator complex in zygotic paternal genome demethylation. Nature 463:554–558PubMedCrossRefGoogle Scholar
  61. 61.
    Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935PubMedCrossRefGoogle Scholar
  62. 62.
    Iqbal K, Jin SG, Pfeifer GP, Szabó PE (2011) Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc Natl Acad Sci USA 108:3642–3647PubMedCrossRefGoogle Scholar
  63. 63.
    Inoue A, Zhang Y (2011) Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science 334:194 doi: 10.1126/science.1212483Google Scholar
  64. 64.
    Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324:929–930PubMedCrossRefGoogle Scholar
  65. 65.
    Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466:1129–1133PubMedCrossRefGoogle Scholar
  66. 66.
    Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA et al (2011) Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473:398–402PubMedCrossRefGoogle Scholar
  67. 67.
    Koh KP, Yabuuchi A, Rao S, Huang Y, Cunniff K, Nardone J et al (2011) Tet1 and tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell 8:200–213PubMedCrossRefGoogle Scholar
  68. 68.
    Nakamura T, Arai Y, Umehara H, Masuhara M, Kimura T, Taniguchi H et al (2007) PGC7/Stella protects against DNA demethylation in early embryogenesis. Nat Cell Biol 9:64–71PubMedCrossRefGoogle Scholar
  69. 69.
    Howell CY, Bestor TH, Ding F, Latham KE, Mertineit C, Trasler JM et al (2001) Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell 104:829–838PubMedCrossRefGoogle Scholar
  70. 70.
    Ratnam S, Mertineit C, Ding F, Howell CY, Clarke HJ, Bestor TH et al (2002) Dynamics of Dnmt1 methyltransferase expression and intracellular localization during oogenesis and preimplantation development. Dev Biol 245:304–314PubMedCrossRefGoogle Scholar
  71. 71.
    Hirasawa R, Chiba H, Kaneda M, Tajima S, Li E, Jaenisch R et al (2008) Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development. Genes Dev 15:1607–1616CrossRefGoogle Scholar
  72. 72.
    Mohan KN, Ding F, Chaillet JR (2011) Distinct roles of DMAP1 in mouse development. Mol Cell Biol 31:1861–1869PubMedCrossRefGoogle Scholar
  73. 73.
    Li X, Ito M, Zhou F, Youngson N, Zuo X, Leder P et al (2008) A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev Cell 15:547–557PubMedCrossRefGoogle Scholar
  74. 74.
    Mackay DJ, Callaway JL, Marks SM, White HE, Acerini CL, Boonen SE et al (2008) Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat Genet 40:949–951PubMedCrossRefGoogle Scholar
  75. 75.
    Rowe HM, Jakobsson J, Mesnard D, Rougemont J, Reynard S, Aktas T et al (2010) KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463:237–240PubMedCrossRefGoogle Scholar
  76. 76.
    Chapman V, Forrester L, Sanford J, Hastie N, Rossant J (1984) Cell lineage-specific undermethylation of mouse repetitive DNA. Nature 307:284–286PubMedCrossRefGoogle Scholar
  77. 77.
    Sarmento OF, Digilio LC, Wang Y, Perlin J, Herr JC, Allis CD et al (2004) Dynamic alterations of specific histone modifications during early murine development. J Cell Sci 117:4449–4459PubMedCrossRefGoogle Scholar
  78. 78.
    Torres-Padilla ME, Parfitt DE, Kouzarides T, Zernicka-Goetz M (2007) Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature 445:214–218PubMedCrossRefGoogle Scholar
  79. 79.
    Parfitt DE, Zernicka-Goetz M (2010) Epigenetic modification affecting expression of cell polarity and cell fate genes to regulate lineage specification in the early mouse embryo. Mol Biol Cell 21:2649–2660PubMedCrossRefGoogle Scholar
  80. 80.
    Jedrusik A, Parfitt DE, Guo G et al (2008) Role of Cdx2 and cell polarity in cell allocation and specification of trophectoderm and inner cell mass in the mouse embryo. Genes Dev 22:2692–2706PubMedCrossRefGoogle Scholar
  81. 81.
    Ng RK, Dean W, Dawson C, Lucifero D, Madeja Z, Reik W et al (2008) Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5. Nat Cell Biol 10:1280–1290PubMedCrossRefGoogle Scholar
  82. 82.
    Hayashi K, Lopes SM, Tang F, Surani MA (2008) Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell 3:391–401PubMedCrossRefGoogle Scholar
  83. 83.
    Ji H, Ehrlich LI, Seita J, Murakami P, Doi A, Lindau P et al (2010) Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 467:338–342PubMedCrossRefGoogle Scholar
  84. 84.
    Satterlee JS, Schübeler D, Ng HH (2010) Tackling the epigenome: challenges and opportunities for collaboration. Nat Biotechnol 28:1039–1044PubMedCrossRefGoogle Scholar
  85. 85.
    Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326PubMedCrossRefGoogle Scholar
  86. 86.
    Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P et al (2008) Dissecting direct reprogramming through integrative genomic analysis. Nature 454:49–55PubMedCrossRefGoogle Scholar
  87. 87.
    Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G et al (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471:68–73PubMedCrossRefGoogle Scholar
  88. 88.
    Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S et al (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40:897–903PubMedCrossRefGoogle Scholar
  89. 89.
    Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF et al (2009) Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459:108–112PubMedCrossRefGoogle Scholar
  90. 90.
    Mikkelsen TS, Xu Z, Zhang X, Wang L, Gimble JM, Lander ES et al (2010) Comparative epigenomic analysis of murine and human adipogenesis. Cell 143:156–169PubMedCrossRefGoogle Scholar
  91. 91.
    Illingworth RS, Bird AP (2009) CpG islands–‘a rough guide’. FEBS Lett 583:1713–1120PubMedCrossRefGoogle Scholar
  92. 92.
    Illingworth R, Kerr A, Desousa D, Jørgensen H, Ellis P, Stalker J et al (2008) A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol 6:e22PubMedCrossRefGoogle Scholar
  93. 93.
    Illingworth RS, Gruenewald-Schneider U, Webb S, Kerr AR, James KD, Turner DJ et al (2010) Orphan CpG islands identify numerous conserved promoters in the mammalian genome. PLoS Genet 6:e1001134CrossRefGoogle Scholar
  94. 94.
    Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD et al (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466:253–257PubMedCrossRefGoogle Scholar
  95. 95.
    Irizarry RA, Ladd-Acosta C, Wen B et al (2008) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41:178–186CrossRefGoogle Scholar
  96. 96.
    Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A et al (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454:766–770PubMedGoogle Scholar
  97. 97.
    Thomson JP, Skene PJ, Selfridge J, Clouaire T, Guy J, Webb S et al (2010) CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature 464:1082–1086PubMedCrossRefGoogle Scholar
  98. 98.
    Blackledge NP, Zhou JC, Tolstorukov MY, Farcas AM, Park PJ, Klose RJ (2010) CpG islands recruit a histone H3 lysine 36 demethylase. Mol Cell 38:179–190PubMedCrossRefGoogle Scholar
  99. 99.
    Hernandez-Munoz I, Taghavi P, Kuijl C, Neefjes J, van Lohuizen M (2005) Association of BMI1 with polycomb bodies is dynamic and requires PRC2/EZH2 and the maintenance DNA methyltransferase DNMT1. Mol Cell Biol 25:11047–11058PubMedCrossRefGoogle Scholar
  100. 100.
    Viré E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C et al (2006) The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439:871–874PubMedCrossRefGoogle Scholar
  101. 101.
    Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L et al (2007) A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 39:237–242PubMedCrossRefGoogle Scholar
  102. 102.
    Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J et al (2007) Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 39:232–236PubMedCrossRefGoogle Scholar
  103. 103.
    Bostick M, Kim JK, Estève PO, Clark A, Pradhan S, Jacobsen SE (2007) UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317:1760–1764PubMedCrossRefGoogle Scholar
  104. 104.
    Sharif J, Muto M, Takebayashi S, Suetake I, Iwamatsu A, Endo TA et al (2007) The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450:908–912PubMedCrossRefGoogle Scholar
  105. 105.
    Margueron R, Reinberg D (2010) Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet 11:285–296PubMedCrossRefGoogle Scholar
  106. 106.
    Espada J, Ballestar E, Fraga MF, Villar-Garea A, Juarranz A, Stockert JC et al (2004) Human DNA methyltransferase 1 is required for maintenance of the histone H3 modification pattern. J Biol Chem 279:37175–37184PubMedCrossRefGoogle Scholar
  107. 107.
    Kacem S, Feil R (2009) Chromatin mechanisms in genomic imprinting. Mamm Genome 20:544–556PubMedCrossRefGoogle Scholar
  108. 108.
    Tucker KL, Beard C, Dausmann J, Jackson-Grusby L, Laird PW, Lei H et al (1996) Germ-line passage is required for establishment of methylation and expression patterns of imprinted but not of nonimprinted genes. Genes Dev 10:1008–1020PubMedCrossRefGoogle Scholar
  109. 109.
    Wareham KA, Lyon MF, Glenister PH, Williams ED (1987) Age-related reactivation of an X-linked gene. Nature 327:725–727PubMedCrossRefGoogle Scholar
  110. 110.
    Bennett-Baker PE, Wilkowski J, Burke DT (2003) Age-associated activation of epigenetically repressed genes in the mouse. Genetics 165:2055–2062PubMedGoogle Scholar
  111. 111.
    Carrel L, Willard HF (2005) X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434:400–404PubMedCrossRefGoogle Scholar
  112. 112.
    Fu VX, Dobosy JR, Desotelle JA, Almassi N, Ewald JA, Srinivasan R et al (2008) Aging and cancer-related loss of insulin-like growth factor 2 imprinting in the mouse and human prostate. Cancer Res 68:6797–6802PubMedCrossRefGoogle Scholar
  113. 113.
    Sandovici I, Leppert M, Hawk PR, Suarez A, Linares Y, Sapienza C (2003) Familial aggregation of abnormal methylation of parental alleles at the IGF2/H19 and IGF2R differentially methylated regions. Hum Mol Genet 12:1569–1578PubMedCrossRefGoogle Scholar
  114. 114.
    Schneider E, Pliushch G, El Hajj N, Galetzka D, Puhl A, Schorsch M et al (2010) Spatial, temporal and interindividual epigenetic variation of functionally important DNA methylation patterns. Nucleic Acids Res 38:3880–3890PubMedCrossRefGoogle Scholar
  115. 115.
    Frost JM, Monk D, Stojilkovic-Mikic T, Woodfine K, Chitty LS, Murrell A et al (2010) Evaluation of allelic expression of imprinted genes in adult human blood. PLoS One 5:e13556PubMedCrossRefGoogle Scholar
  116. 116.
    Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102:10604–10609PubMedCrossRefGoogle Scholar
  117. 117.
    Grönniger E, Weber B, Heil O, Peters N, Stäb F, Wenck H et al (2010) Aging and chronic sun exposure cause distinct epigenetic changes in human skin. PLoS Genet 6:e1000971PubMedCrossRefGoogle Scholar
  118. 118.
    Daxinger L, Whitelaw E (2010) Transgenerational epigenetic inheritance: more questions than answers. Genome Res 20:1623–1628PubMedCrossRefGoogle Scholar
  119. 119.
    Skinner MK, Manikkam M, Guerrero-Bosagna C (2011) Epigenetic transgenerational actions of endocrine disruptors. Reprod Toxicol 31:337–343PubMedCrossRefGoogle Scholar
  120. 120.
    Morgan HD, Sutherland HG, Martin DI, Whitelaw E (1999) Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 23:314–318PubMedCrossRefGoogle Scholar
  121. 121.
    Blewitt ME, Vickaryous NK, Paldi A, Koseki H, Whitelaw E (2006) Dynamic reprogramming of DNA methylation at an epigenetically sensitive allele in mice. PLoS Genet 2:e49PubMedCrossRefGoogle Scholar
  122. 122.
    Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308:1466–1469PubMedCrossRefGoogle Scholar
  123. 123.
    Guerrero-Bosagna C, Settles M, Lucker B, Skinner MK (2010) Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PLoS One 5:e13100CrossRefGoogle Scholar
  124. 124.
    Kaati G, Bygren LO, Edvinsson S (2002) Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur J Hum Genet 10:682–688PubMedCrossRefGoogle Scholar
  125. 125.
    Pembrey ME, Bygren LO, Kaati G, Edvinsson S, Northstone K, Sjöström M et al (2006) Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet 14:159–166PubMedCrossRefGoogle Scholar
  126. 126.
    Teperino R, Schoonjans K, Auwerx J (2010) Histone methyl transferases and demethylases; can they link metabolism and transcription? Cell Metab 1:321–327CrossRefGoogle Scholar
  127. 127.
    Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23:5293–5300PubMedCrossRefGoogle Scholar
  128. 128.
    Cropley JE, Suter CM, Beckman KB, Martin DI (2006) Germ-line epigenetic modification of the murine Avy allele by nutritional supplementation. Proc Natl Acad Sci USA 103:17308–17312PubMedCrossRefGoogle Scholar
  129. 129.
    Waterland RA, Travisano M, Tahiliani KG (2007) Diet-induced hypermethylation at agouti viable yellow is not inherited transgenerationally through the female. FASEB J 21:3380–3385PubMedCrossRefGoogle Scholar
  130. 130.
    Waterland RA, Kellermayer R, Laritsky E, Rayco-Solon P, Harris RA, Travisano M et al (2010) Season of conception in rural gambia affects DNA methylation at putative human metastable epialleles. PLoS Genet 6:e1001252PubMedCrossRefGoogle Scholar
  131. 131.
    Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES et al (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 105:17046–17049PubMedCrossRefGoogle Scholar
  132. 132.
    Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD et al (2009) DNA methy­lation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 18:4046–4053PubMedCrossRefGoogle Scholar
  133. 133.
    Anway MD, Rekow SS, Skinner MK (2008) Transgenerational epigenetic programming of the embryonic testis transcriptome. Genomics 91:30–40PubMedCrossRefGoogle Scholar
  134. 134.
    Richards EJ (2009) Quantitative epigenetics: DNA sequence variation need not apply. Genes Dev 23:1601–1605PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Epigenetics ProgrammeThe Babraham InstituteCambridgeUK
  2. 2.Centre for Trophoblast ResearchUniversity of CambridgeCambridgeUK

Personalised recommendations