Laboratory Methods in Epigenetic Epidemiology

  • Ludovic Barault
  • Rebecca C. Rancourt


Epidemiology seeks to identify risk factors for disease and to quantify the association between environmental and lifestyle factors and disease frequency in human populations. Epigenetics may provide mechanistic clues on a cellular and molecular level behind epidemiologic links. Combining these two fields along with collecting relevant biospecimens will aid in understanding the benefits and the limitations of genome-wide and gene-specific approaches in decoding the epigenome and its functional relevance. This chapter addresses the importance of the experimental design, optimal preparation of biological samples in population-based studies, provide an overview of the available techniques to analyze DNA methylation, gene expression and histone modification, and highlight possible pitfalls of these approaches.


Histone Modification Imprint Gene Nucleosome Occupancy Bisulfite Conversion Bisulfite Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Collas P (2010) The current state of chromatin immunoprecipitation. Mol Biotechnol 45:87–100PubMedCrossRefGoogle Scholar
  2. 2.
    Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW et al (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA 89:1827–1831PubMedCrossRefGoogle Scholar
  3. 3.
    Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 93:9821–9826PubMedCrossRefGoogle Scholar
  4. 4.
    Campan M, Weisenberger DJ, Trinh B, Laird PW (2009) MethyLight. Methods Mol Biol 507:325–337PubMedCrossRefGoogle Scholar
  5. 5.
    Wojdacz TK, Dobrovic A, Hansen LL (2008) Methylation-sensitive high-resolution melting. Nat Protoc 3:1903–1908PubMedCrossRefGoogle Scholar
  6. 6.
    Xiong Z, Laird PW (1997) COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 25:2532–2534PubMedCrossRefGoogle Scholar
  7. 7.
    Ehrich M, Zoll S, Sur S, van den Boom D (2007) A new method for accurate assessment of DNA quality after bisulfite treatment. Nucleic Acids Res 35:e29PubMedCrossRefGoogle Scholar
  8. 8.
    Tost J, Dunker J, Gut IG (2003) Analysis and quantification of multiple methylation variable positions in CpG islands by Pyrosequencing. Biotechniques 35:152–156PubMedGoogle Scholar
  9. 9.
    Wong HL, Byun HM, Kwan JM, Campan M, Ingles SA, Laird PW et al (2006) Rapid and quantitative method of allele-specific DNA methylation analysis. Biotechniques 41:734–739PubMedCrossRefGoogle Scholar
  10. 10.
    Balaghi M, Wagner C (1993) DNA methylation in folate deficiency: use of CpG methylase. Biochem Biophys Res Commun 193:1184–1190PubMedCrossRefGoogle Scholar
  11. 11.
    Fujiwara H, Ito M (2002) Nonisotopic cytosine extension assay: a highly sensitive method to evaluate CpG island methylation in the whole genome. Anal Biochem 307:386–389PubMedCrossRefGoogle Scholar
  12. 12.
    Karimi M, Johansson S, Stach D, Corcoran M, Grander D, Schalling M et al (2006) LUMA (LUminometric Methylation Assay) – a high throughput method to the analysis of genomic DNA methylation. Exp Cell Res 312:1989–1995PubMedCrossRefGoogle Scholar
  13. 13.
    Yang AS, Estecio MR, Doshi K, Kondo Y, Tajara EH, Issa JP (2004) A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 32:e38PubMedCrossRefGoogle Scholar
  14. 14.
    Irahara N, Nosho K, Baba Y, Shima K, Lindeman NI, Hazra A et al (2010) Precision of pyrosequencing assay to measure LINE-1 methylation in colon cancer, normal colonic mucosa, and peripheral blood cells. J Mol Diagn 12:177–183PubMedCrossRefGoogle Scholar
  15. 15.
    Stanzer S, Balic M, Strutz J, Heitzer E, Obermair F, Hauser-Kronberger C et al (2010) Rapid and reliable detection of LINE-1 hypomethylation using high-resolution melting analysis. Clin Biochem 43:1443–1448PubMedCrossRefGoogle Scholar
  16. 16.
    Weisenberger DJ, Campan M, Long TI, Kim M, Woods C, Fiala E et al (2005) Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res 33:6823–6836PubMedCrossRefGoogle Scholar
  17. 17.
    Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324:929–930PubMedCrossRefGoogle Scholar
  18. 18.
    Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935PubMedCrossRefGoogle Scholar
  19. 19.
    Pastor WA, Pape UJ, Huang Y, Henderson HR, Lister R, Ko M et al (2011) Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 473:394–397PubMedCrossRefGoogle Scholar
  20. 20.
    Laird PW (2010) Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet 11:191–203PubMedCrossRefGoogle Scholar
  21. 21.
    Estecio MR, Yan PS, Ibrahim AE, Tellez CS, Shen L, Huang TH et al (2007) High-throughput methylation profiling by MCA coupled to CpG island microarray. Genome Res 17:1529–1536PubMedCrossRefGoogle Scholar
  22. 22.
    Smith ZD, Gu H, Bock C, Gnirke A, Meissner A (2009) High-throughput bisulfite sequencing in mammalian genomes. Methods 48:226–232PubMedCrossRefGoogle Scholar
  23. 23.
    Wojdacz TK, Hansen LL, Dobrovic A (2008) A new approach to primer design for the control of PCR bias in methylation studies. BMC Res Notes 1:54PubMedCrossRefGoogle Scholar
  24. 24.
    Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS (2010) Non-coding RNAs: regulators of disease. J Pathol 220:126–139PubMedCrossRefGoogle Scholar
  25. 25.
    Thakur N, Tiwari VK, Thomassin H, Pandey RR, Kanduri M, Gondor A et al (2004) An antisense RNA regulates the bidirectional silencing property of the Kcnq1 imprinting control region. Mol Cell Biol 24:7855–7862PubMedCrossRefGoogle Scholar
  26. 26.
    Hegde P, Qi R, Abernathy K, Gay C, Dharap S, Gaspard R et al (2000) A concise guide to cDNA microarray analysis. Biotechniques 29:548–550, 552–544, 556 passimGoogle Scholar
  27. 27.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45PubMedCrossRefGoogle Scholar
  28. 28.
    Stahlberg A, Hakansson J, Xian X, Semb H, Kubista M (2004) Properties of the reverse transcription reaction in mRNA quantification. Clin Chem 50:509–515PubMedCrossRefGoogle Scholar
  29. 29.
    Monk D, Arnaud P, Frost J, Hills FA, Stanier P, Feil R et al (2009) Reciprocal imprinting of human GRB10 in placental trophoblast and brain: evolutionary conservation of reversed allelic expression. Hum Mol Genet 18:3066–3074PubMedCrossRefGoogle Scholar
  30. 30.
    Monk D, Sanches R, Arnaud P, Apostolidou S, Hills FA, Abu-Amero S et al (2006) Imprinting of IGF2 P0 transcript and novel alternatively spliced INS-IGF2 isoforms show differences between mouse and human. Hum Mol Genet 15:1259–1269PubMedCrossRefGoogle Scholar
  31. 31.
    Vignal A, Milan D, SanCristobal M, Eggen A (2002) A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol 34:275–305PubMedCrossRefGoogle Scholar
  32. 32.
    Kuppuswamy MN, Hoffmann JW, Kasper CK, Spitzer SG, Groce SL, Bajaj SP (1991) Single nucleotide primer extension to detect genetic diseases: experimental application to hemophilia B (factor IX) and cystic fibrosis genes. Proc Natl Acad Sci USA 88:1143–1147PubMedCrossRefGoogle Scholar
  33. 33.
    Lombardo AJ, Brown GB (1996) A quantitative and specific method for measuring transcript levels of highly homologous genes. Nucleic Acids Res 24:4812–4816PubMedCrossRefGoogle Scholar
  34. 34.
    Singer-Sam J, LeBon JM, Dai A, Riggs AD (1992) A sensitive, quantitative assay for measurement of allele-specific transcripts differing by a single nucleotide. PCR Methods Appl 1:160–163PubMedGoogle Scholar
  35. 35.
    Uejima H, Lee MP, Cui H, Feinberg AP (2000) Hot-stop PCR: a simple and general assay for linear quantitation of allele ratios. Nat Genet 25:375–376PubMedCrossRefGoogle Scholar
  36. 36.
    Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622PubMedCrossRefGoogle Scholar
  37. 37.
    Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705PubMedCrossRefGoogle Scholar
  38. 38.
    McEwen KR, Ferguson-Smith AC (2010) Distinguishing epigenetic marks of developmental and imprinting regulation. Epigenet Chromatin 3:2CrossRefGoogle Scholar
  39. 39.
    Fatemi M, Pao MM, Jeong S, Gal-Yam EN, Egger G, Weisenberger DJ et al (2005) Footprinting of mammalian promoters: use of a CpG DNA methyltransferase revealing nucleosome positions at a single molecule level. Nucleic Acids Res 33:e176PubMedCrossRefGoogle Scholar
  40. 40.
    Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295:1306–1311PubMedCrossRefGoogle Scholar
  41. 41.
    Dekker J (2006) The three ‘C’ s of chromosome conformation capture: controls, controls, controls. Nat Methods 3:17–21PubMedCrossRefGoogle Scholar
  42. 42.
    Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics, Gynecology and Reproductive BiologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations