Epigenetic Epidemiology of Obesity, Type 2 Diabetes, and Metabolic Disorders

Chapter

Abstract

Knowledge and inclusion of epigenetic variants as potential risk factors for obesity and type 2 diabetes (T2D) will improve diagnosis and mechanistic understanding of these complex metabolic disorders. A number of practical and conceptual issues still have to be worked out before epidemiological studies can fully integrate epigenomic approaches. Altered patterns of histone modifications, DNA methylation, and microRNA levels are implicated in obesity and T2D. Recent studies are discussed, thereby illustrating strengths and challenges to accurately identify and measure epigenetic differences that covary with metabolic disorders. Unlike classical, DNA sequence-based approaches, the choice of cell or tissue type as source material may confound the results of such epigenomic studies. It is becoming clear that various types of epigenetic signatures exist; some are very stable and do not change over many years within an individual, whereas others are liable to change and perhaps more influenced by age and environmental and physiological conditions. A standardized classification system to accurately describe and characterize the properties of newly identified epigenetic signatures will enable the generation of reproducible epigenetic data.

Keywords

Pancreatic Islet Methylation Level Imprint Gene Epigenetic Mark Epigenetic Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

AS

Angelman syndrome

BMI

Body mass index

CNV

Copy number variation

DMR

Differentially methylated region

GWAS

Genome-wide association study

LOI

Loss of imprinting

PBL

Peripheral blood lymphocyte

PWS

Prader-Willi syndrome

SNP

Single nucleotide polymorphism

T2D

Type 2 diabetes

VMR

Variably methylated region

Notes

Acknowledgments

I am grateful to the editor, Karin Michels, as well as Catherine Suter and David Martin for comments and suggestions on the manuscript.

References

  1. 1.
    Flintoft L (2010) Complex disease: adding epigenetics to the mix. Nat Rev Genet 11:94–95CrossRefGoogle Scholar
  2. 2.
    Stunkard AJ, Harris JR, Pedersen NL, McClearn GE (1990) The body-mass index of twins who have been reared apart. N Engl J Med 322:1483–1487PubMedCrossRefGoogle Scholar
  3. 3.
    Turula M, Kaprio J, Rissanen A, Koskenvuo M (1990) Body weight in the Finnish Twin Cohort. Diabetes Res Clin Pract 10(Suppl 1):S33–S36PubMedCrossRefGoogle Scholar
  4. 4.
    Wardle J, Carnell S, Haworth CM, Plomin R (2008) Evidence for a strong genetic influence on childhood adiposity despite the force of the obesogenic environment. Am J Clin Nutr 87:398–404Google Scholar
  5. 5.
    Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP et al (2010) Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 42:579–589PubMedCrossRefGoogle Scholar
  6. 6.
    Consortium WTCC (2010) Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature 464:713–720CrossRefGoogle Scholar
  7. 7.
    Stöger R (2008) The thrifty epigenotype: an acquired and heritable predisposition for obesity and diabetes? Bioessays 30:156–166PubMedCrossRefGoogle Scholar
  8. 8.
    Stöger R (2008) Epigenetics and obesity. Pharmacogenomics 9:1851–1860PubMedCrossRefGoogle Scholar
  9. 9.
    Koza RA, Nikonova L, Hogan J, Rim JS, Mendoza T, Faulk C et al (2006) Changes in gene expression foreshadow diet-induced obesity in genetically identical mice. PLoS Genet 2:e81PubMedCrossRefGoogle Scholar
  10. 10.
    Chen Y, Zhu J, Lum PY, Yang X, Pinto S, MacNeil DJ et al (2008) Variations in DNA elucidate molecular networks that cause disease. Nature 452:429–435PubMedCrossRefGoogle Scholar
  11. 11.
    Ling C, Groop L (2009) Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes 58:2718–2725PubMedCrossRefGoogle Scholar
  12. 12.
    Rönn T, Poulsen P, Hansson O, Holmkvist J, Almgren P, Nilsson P et al (2008) Age influences DNA methylation and gene expression of COX7A1 in human skeletal muscle. Diabetologia 51:1159–1168PubMedCrossRefGoogle Scholar
  13. 13.
    Sreekumar R, Halvatsiotis P, Schimke JC, Nair KS (2002) Gene expression profile in skeletal muscle of type 2 diabetes and the effect of insulin treatment. Diabetes 51:1913–1920PubMedCrossRefGoogle Scholar
  14. 14.
    Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J et al (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34:267–273PubMedCrossRefGoogle Scholar
  15. 15.
    Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S et al (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci USA 100:8466–8471PubMedCrossRefGoogle Scholar
  16. 16.
    Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102:10604–10609PubMedCrossRefGoogle Scholar
  17. 17.
    Rhodes CJ (2005) Type 2 diabetes-a matter of beta-cell life and death? Science 307:380–384PubMedCrossRefGoogle Scholar
  18. 18.
    Gaulton KJ, Nammo T, Pasquali L, Simon JM, Giresi PG, Fogarty MP et al (2010) A map of open chromatin in human pancreatic islets. Nat Genet 42:255–259PubMedCrossRefGoogle Scholar
  19. 19.
    Lyssenko V, Lupi R, Marchetti P, Del Guerra S, Orho-Melander M, Almgren P et al (2007) Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest 117:2155–2163PubMedCrossRefGoogle Scholar
  20. 20.
    Lee SH, Demeterco C, Geron I, Abrahamsson A, Levine F, Itkin-Ansari P (2008) Islet specific Wnt activation in human type II diabetes. Exp Diabetes Res 2008:728763PubMedGoogle Scholar
  21. 21.
    Ingelsson E, Langenberg C, Hivert MF, Prokopenko I, Lyssenko V, Dupuis J et al (2010) Detailed physiologic characterization reveals diverse mechanisms for novel genetic Loci regulating glucose and insulin metabolism in humans. Diabetes 59:1266–1275PubMedCrossRefGoogle Scholar
  22. 22.
    Liu Z, Habener JF (2010) Wnt signaling in pancreatic islets. Adv Exp Med Biol 654:391–419PubMedCrossRefGoogle Scholar
  23. 23.
    Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB et al (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473:43–49PubMedCrossRefGoogle Scholar
  24. 24.
    Richards EJ (2006) Inherited epigenetic variation–revisiting soft inheritance. Nat Rev Genet 7:395–401PubMedCrossRefGoogle Scholar
  25. 25.
    Richards EJ (2008) Population epigenetics. Curr Opin Genet Dev 18:221–226PubMedCrossRefGoogle Scholar
  26. 26.
    Bhandare R, Schug J, Le Lay J, Fox A, Smirnova O, Liu C et al (2010) Genome-wide analysis of histone modifications in human pancreatic islets. Genome Res 20:428–433PubMedCrossRefGoogle Scholar
  27. 27.
    Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837PubMedCrossRefGoogle Scholar
  28. 28.
    Mutskov V, Felsenfeld G (2009) The human insulin gene is part of a large open chromatin domain specific for human islets. Proc Natl Acad Sci USA 106:17419–17424PubMedCrossRefGoogle Scholar
  29. 29.
    Melkman-Zehavi T, Oren R, Kredo-Russo S, Shapira T, Mandelbaum AD, Rivkin N, Nir T, Lennox KA, Behlke MA, Dor Y, Hornstein E (2011) miRNAs control insulin content in pancreatic beta-cells via downregulation of transcriptional repressors. EMBO J 30:835–845PubMedCrossRefGoogle Scholar
  30. 30.
    Schwartz MW, Porte D Jr (2005) Diabetes, obesity, and the brain. Science 307:375–379PubMedCrossRefGoogle Scholar
  31. 31.
    Simpson KA, Martin NM, Bloom SR (2008) Hypothalamic regulation of appetite. Expert Rev Endocrinol Metab 3:577–592CrossRefGoogle Scholar
  32. 32.
    Vucetic Z, Reyes MT (2010) Central dopaminergic circuitry controlling food intake and reward: implications for the regulation of obesity. Wiley Interdiscip Rev Syst Biol Med 2:577–593PubMedGoogle Scholar
  33. 33.
    Bellet MM, Sassone-Corsi P (2010) Mammalian circadian clock and metabolism – the epigenetic link. J Cell Sci 123:3837–3848PubMedCrossRefGoogle Scholar
  34. 34.
    McConkie-Rosell A, Lachiewicz AM, Spiridigliozzi GA, Tarleton J, Schoenwald S, Phelan MC et al (1993) Evidence that methylation of the FMR-I locus is responsible for variable phenotypic expression of the fragile X syndrome. Am J Hum Genet 53:800–809PubMedGoogle Scholar
  35. 35.
    Stöger R, Kajimura TM, Brown WT, Laird CD (1997) Epigenetic variation illustrated by DNA methylation patterns of the fragile-X gene FMR1. Hum Mol Genet 6:1791–1801PubMedCrossRefGoogle Scholar
  36. 36.
    Terracciano A, Chiurazzi P, Neri G (2005) Fragile X syndrome. Am J Med Genet C Semin Med Genet 137C:32–37PubMedCrossRefGoogle Scholar
  37. 37.
    Laird CD (1987) Proposed mechanism of inheritance and expression of the human fragile-X syndrome of mental retardation. Genetics 117:587–599PubMedGoogle Scholar
  38. 38.
    Willemsen R, Bontekoe CJ, Severijnen LA, Oostra BA (2002) Timing of the absence of FMR1 expression in full mutation chorionic villi. Hum Genet 110:601–605PubMedCrossRefGoogle Scholar
  39. 39.
    Waterland RA, Garza C (1999) Potential mechanisms of metabolic imprinting that lead to chronic disease. Am J Clin Nutr 69:179–197PubMedGoogle Scholar
  40. 40.
    Hales CN, Ozanne SE (2003) For debate: Fetal and early postnatal growth restriction lead to diabetes, the metabolic syndrome and renal failure. Diabetologia 46:1013–1019PubMedCrossRefGoogle Scholar
  41. 41.
    Simmons R (2005) Developmental origins of adult metabolic disease: concepts and controversies. Trends Endocrinol Metab 16:390–394PubMedCrossRefGoogle Scholar
  42. 42.
    Gallou-Kabani C, Junien C (2005) Nutritional epigenomics of metabolic syndrome: new perspective against the epidemic. Diabetes 54:1899–1906PubMedCrossRefGoogle Scholar
  43. 43.
    Holness MJ, Sugden MC (2006) Epigenetic regulation of metabolism in children born small for gestational age. Curr Opin Clin Nutr Metab Care 9:482–488PubMedCrossRefGoogle Scholar
  44. 44.
    Stein Z (1975) Famine and human development: the Dutch hunger winter of 1944–1945. Oxford University Press, New YorkGoogle Scholar
  45. 45.
    Stein AD, Kahn HS, Rundle A, Zybert PA, van der Pal-de BK, Lumey LH (2007) Anthropometric measures in middle age after exposure to famine during gestation: evidence from the Dutch famine. Am J Clin Nutr 85:869–876PubMedGoogle Scholar
  46. 46.
    Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES et al (2008) Persistent ­epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 105:17046–17049PubMedCrossRefGoogle Scholar
  47. 47.
    Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD et al (2009) DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 18:4046–4053PubMedCrossRefGoogle Scholar
  48. 48.
    Wellen KE, Hotamisligil GS (2003) Obesity-induced inflammatory changes in adipose tissue. J Clin Invest 112:1785–1788PubMedGoogle Scholar
  49. 49.
    Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ et al (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:1821–1830PubMedGoogle Scholar
  50. 50.
    Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808PubMedGoogle Scholar
  51. 51.
    Kintscher U, Hartge M, Hess K, Foryst-Ludwig A, Clemenz M, Wabitsch M et al (2008) T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler Thromb Vasc Biol 28:1304–1310PubMedCrossRefGoogle Scholar
  52. 52.
    Stöger R (2006) In vivo methylation patterns of the Leptin promoter in human and mouse. Epigenetics 1:155–162PubMedCrossRefGoogle Scholar
  53. 53.
    Noer A, Sorensen AL, Boquest AC, Collas P (2006) Stable CpG hypomethylation of adipogenic promoters in freshly isolated, cultured, and differentiated mesenchymal stem cells from adipose tissue. Mol Biol Cell 17:3543–3556PubMedCrossRefGoogle Scholar
  54. 54.
    El-Maarri O, Becker T, Junen J, Manzoor SS, Diaz-Lacava A, Schwaab R et al (2007) Gender specific differences in levels of DNA methylation at selected loci from human total blood: a tendency toward higher methylation levels in males. Hum Genet 122:505–514PubMedCrossRefGoogle Scholar
  55. 55.
    Feinberg AP, Irizarry RA, Fradin D, Aryee MJ, Murakami P, Aspelund T et al (2010) Personalized epigenomic signatures that are stable over time and covary with body mass index. Sci Transl Med 2:49–67CrossRefGoogle Scholar
  56. 56.
    Irizarry RA, Ladd-Acosta C, Carvalho B, Wu H, Brandenburg SA, Jeddeloh JA et al (2008) Comprehensive high-throughput arrays for relative methylation (CHARM). Genome Res 18:780–790PubMedCrossRefGoogle Scholar
  57. 57.
    Harris TB, Launer LJ, Eiriksdottir G, Kjartansson O, Jonsson PV, Sigurdsson G et al (2007) Age, gene/environment susceptibility-Reykjavik study: multidisciplinary applied phenomics. Am J Epidemiol 165:1076–1087PubMedCrossRefGoogle Scholar
  58. 58.
    Nair S, Lee YH, Rousseau E, Cam M, Tataranni PA, Baier LJ et al (2005) Increased expression of inflammation-related genes in cultured preadipocytes/stromal vascular cells from obese compared with non-obese Pima Indians. Diabetologia 48:1784–1788PubMedCrossRefGoogle Scholar
  59. 59.
    O’Hara A, Lim FL, Mazzatti DJ, Trayhurn P (2009) Microarray analysis identifies matrix metalloproteinases (MMPs) as key genes whose expression is up-regulated in human adipocytes by macrophage-conditioned medium. Pflugers Arch 458:1103–1114PubMedCrossRefGoogle Scholar
  60. 60.
    Cardellini M, Menghini R, Martelli E, Casagrande V, Marino A, Rizza S et al (2009) TIMP3 is reduced in atherosclerotic plaques from subjects with type 2 diabetes and increased by SirT1. Diabetes 58:2396–2401PubMedCrossRefGoogle Scholar
  61. 61.
    Kent CF, Daskalchuk T, Cook L, Sokolowski MB, Greenspan RJ (2009) The Drosophila foraging gene mediates adult plasticity and gene-environment interactions in behaviour, metabolites, and gene expression in response to food deprivation. PLoS Genet 5:e1000609PubMedCrossRefGoogle Scholar
  62. 62.
    Zakharkin SO, Belay AT, Fernandez JR, De Luca V, Kennedy JL, Sokolowski MB et al (2005) Lack of association between polymorphism of the human cyclic GMP-dependent protein kinase gene and obesity. Int J Obes (Lond) 29:872–874CrossRefGoogle Scholar
  63. 63.
    Ogawa O, Eccles MR, Szeto J, McNoe LA, Yun K, Maw MA et al (1993) Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms’ tumour. Nature 362:749–751PubMedCrossRefGoogle Scholar
  64. 64.
    Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447:433–440PubMedCrossRefGoogle Scholar
  65. 65.
    Constancia M, Kelsey G, Reik W (2004) Resourceful imprinting. Nature 432:53–57PubMedCrossRefGoogle Scholar
  66. 66.
    Charalambous M, da Rocha ST, Ferguson-Smith AC (2007) Genomic imprinting, growth control and the allocation of nutritional resources: consequences for postnatal life. Curr Opin Endocrinol Diabetes Obes 14:3–12PubMedCrossRefGoogle Scholar
  67. 67.
    Moore T, Haig D (1991) Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet 7:45–49PubMedGoogle Scholar
  68. 68.
    Haig D (2000) The kinship theory of genomic imprinting. Annu Rev Ecol Syst 31:9–32CrossRefGoogle Scholar
  69. 69.
    Haig D (2004) Genomic imprinting and kinship: how good is the evidence? Annu Rev Genet 38:553–585PubMedCrossRefGoogle Scholar
  70. 70.
    Parker-Katiraee L, Carson AR, Yamada T, Arnaud P, Feil R, Abu-Amero SN, Moore GE, Kaneda M, Perry GH, Stone AC, Lee C, Meguro-Horike M et al (2007) Identification of the imprinted KLF14 transcription factor undergoing human-specific accelerated evolution. PLoS Genet 3:e65PubMedCrossRefGoogle Scholar
  71. 71.
    Small KS, Hedman AK, Grundberg E, Nica AC, Thorleifsson G, Kong A, Thorsteindottir U, Shin SY, Richards HB, Soranzo N, Ahmadi KR, Lindgren CM et al (2011) Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes. Nat Genet 43:561–564PubMedCrossRefGoogle Scholar
  72. 72.
    Shapira NA, Lessig MC, He AG, James GA, Driscoll DJ, Liu Y (2005) Satiety dysfunction in Prader-Willi syndrome demonstrated by fMRI. J Neurol Neurosurg Psychiatry 76:260–262PubMedCrossRefGoogle Scholar
  73. 73.
    Herzing LB, Kim SJ, Cook EH Jr, Ledbetter DH (2001) The human aminophospholipid-transporting ATPase gene ATP10C maps adjacent to UBE3A and exhibits similar imprinted expression. Am J Hum Genet 68:1501–1505PubMedCrossRefGoogle Scholar
  74. 74.
    Hogart A, Patzel KA, LaSalle JM (2008) Gender influences monoallelic expression of ATP10A in human brain. Hum Genet 124:235–242PubMedCrossRefGoogle Scholar
  75. 75.
    Kelsey G (2009) Epigenetics and imprinted genes: insights from the imprinted Gnas locus. Horm Res 71(Suppl 2):22–29PubMedCrossRefGoogle Scholar
  76. 76.
    Weinstein LS, Xie T, Qasem A, Wang J, Chen M (2010) The role of GNAS and other imprinted genes in the development of obesity. Int J Obes (Lond) 34:6–17CrossRefGoogle Scholar
  77. 77.
    Kassem SA, Ariel I, Thornton PS, Hussain K, Smith V, Lindley KJ et al (2001) p57(KIP2) expression in normal islet cells and in hyperinsulinism of infancy. Diabetes 50:2763–2769PubMedCrossRefGoogle Scholar
  78. 78.
    Yasuda K, Miyake K, Horikawa Y, Hara K, Osawa H, Furuta H et al (2008) Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet 40:1092–1097PubMedCrossRefGoogle Scholar
  79. 79.
    Kong A, Steinthorsdottir V, Masson G, Thorleifsson G, Sulem P, Besenbacher S et al (2009) Parental origin of sequence variants associated with complex diseases. Nature 462:868–874PubMedCrossRefGoogle Scholar
  80. 80.
    Sakatani T, Wei M, Katoh M, Okita C, Wada D, Mitsuya K et al (2001) Epigenetic heterogeneity at imprinted loci in normal populations. Biochem Biophys Res Commun 283:1124–1130PubMedCrossRefGoogle Scholar
  81. 81.
    Cui H, Onyango P, Brandenburg S, Wu Y, Hsieh CL, Feinberg AP (2002) Loss of imprinting in colorectal cancer linked to hypomethylation of H19 and IGF2. Cancer Res 62:6442–6446PubMedGoogle Scholar
  82. 82.
    Petrik J, Pell JM, Arany E, McDonald TJ, Dean WL, Reik W et al (1999) Overexpression of insulin-like growth factor-II in transgenic mice is associated with pancreatic islet cell hyperplasia. Endocrinology 140:2353–2363PubMedCrossRefGoogle Scholar
  83. 83.
    Milo-Landesman D, Efrat S (2002) Growth factor-dependent proliferation of the pancreatic beta-cell line betaTC-tet: an assay for beta-cell mitogenic factors. Int J Exp Diabetes Res 3:69–74PubMedCrossRefGoogle Scholar
  84. 84.
    Devedjian JC, George M, Casellas A, Pujol A, Visa J, Pelegrin M et al (2000) Transgenic mice overexpressing insulin-like growth factor-II in beta cells develop type 2 diabetes. J Clin Invest 105:731–740PubMedCrossRefGoogle Scholar
  85. 85.
    Bouwens L, Rooman I (2005) Regulation of pancreatic beta-cell mass. Physiol Rev 85:1255–1270PubMedCrossRefGoogle Scholar
  86. 86.
    Trajkovski M, Hausser J, Soutschek J, Bhat B, Akin A, Zavolan M, Heim MH, Stoffel M (2011) MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474:649–653PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.School of BiosciencesUniversity of NottinghamNottinghamUK

Personalised recommendations