Skip to main content

Influence of Environmental Factors on the Epigenome

  • Chapter
  • First Online:
Epigenetic Epidemiology

Abstract

In this chapter we will consider the role of environmental factors on the epigenome. The importance of rapidly emerging research into the types of exposures that may alter epigenetic marks is increasingly being recognized. A large portion of epigenetic research to date has focused on epigenetic alterations in cancer and therefore, exposures such as tobacco, alcohol, radiation, arsenic, and air pollution will be covered. Additionally, we review research on other exposures that may affect epigenetic states such as folate and diet, aging, and endocrine disruptors. We will briefly cover environmental exposures and imprinting and development, as well as discuss potential mechanisms for exposures to modify epigenetic states. Appropriate epidemiologic studies will be crucial to understanding the true effect of environmental exposures on the human epigenome and this work is urgently needed in order to better understand the biology of epigenetic alterations. With a more comprehensive understanding of the affects of exposures on the epigenome (including consideration of genetic background), not only will the prediction of the toxic potential of new compounds be more readily achieved, but more personalized disease prevention and treatment strategies may be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morgan HD, Santos F, Green K, Dean W, Reik W (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14:R47–58

    PubMed  CAS  Google Scholar 

  2. Li E (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 3:662–673

    PubMed  CAS  Google Scholar 

  3. Gluckman PD, Hanson MA, Cooper C, Thornburg KL (2008) Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 359:61–73

    PubMed  CAS  Google Scholar 

  4. Daly LE, Kirke PN, Molloy A, Weir DG, Scott JM (1995) Folate levels and neural tube defects. Implications for prevention. JAMA 274:1698–1702

    PubMed  CAS  Google Scholar 

  5. Dunlevy LP, Burren KA, Mills K, Chitty LS, Copp AJ, Greene ND (2006) Integrity of the methylation cycle is essential for mammalian neural tube closure. Birth Defects Res A Clin Mol Teratol 76:544–552

    PubMed  CAS  Google Scholar 

  6. Wang L, Wang F, Guan J, Le J, Wu L, Zou J et al (2010) Relation between hypomethylation of long interspersed nucleotide elements and risk of neural tube defects. Am J Clin Nutr 91:1359–1367

    PubMed  CAS  Google Scholar 

  7. Waterland RA, Michels KB (2007) Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nutr 27:363–388

    PubMed  CAS  Google Scholar 

  8. Gluckman PD, Hanson MA (2004) Developmental origins of disease paradigm: a mechanistic and evolutionary perspective. Pediatr Res 56:311–317

    PubMed  Google Scholar 

  9. Johansson M, Relton C, Ueland PM, Vollset SE, Midttun O, Nygard O et al (2010) Serum B vitamin levels and risk of lung cancer. JAMA 303:2377–2385

    PubMed  CAS  Google Scholar 

  10. Freudenheim JL, Marshall JR, Vena JE, Laughlin R, Brasure JR, Swanson MK et al (1996) Premenopausal breast cancer risk and intake of vegetables, fruits, and related nutrients. J Natl Cancer Inst 88:340–348

    PubMed  CAS  Google Scholar 

  11. Graham S, Hellmann R, Marshall J, Freudenheim J, Vena J, Swanson M et al (1991) Nutritional epidemiology of postmenopausal breast cancer in western New York. Am J Epidemiol 134:552–566

    PubMed  CAS  Google Scholar 

  12. Martinez ME, Marshall JR, Giovannucci E (2008) Diet and cancer prevention: the roles of observation and experimentation. Nat Rev Cancer 8:694–703

    PubMed  CAS  Google Scholar 

  13. Kim DH, Smith-Warner SA, Spiegelman D, Yaun SS, Colditz GA, Freudenheim JL et al (2010) Pooled analyses of 13 prospective cohort studies on folate intake and colon cancer. Cancer Causes Control 21:1919–1930

    PubMed  Google Scholar 

  14. de Vogel S, Wouters KA, Gottschalk RW, van Schooten FJ, de Goeij AF, de Bruine AP et al (2011) Dietary methyl donors, methyl metabolizing enzymes, and epigenetic regulators: diet-gene interactions and promoter CpG island hypermethylation in colorectal cancer. Cancer Causes Control 22:1–12

    PubMed  Google Scholar 

  15. van Driel LM, Eijkemans MJ, de Jonge R, de Vries JH, van Meurs JB, Steegers EA et al (2009) Body mass index is an important determinant of methylation biomarkers in women of reproductive ages. J Nutr 139:2315–2321

    PubMed  Google Scholar 

  16. Sauer J, Mason JB, Choi SW (2009) Too much folate: a risk factor for cancer and cardiovascular disease? Curr Opin Clin Nutr Metab Care 12:30–36

    PubMed  CAS  Google Scholar 

  17. Ingrosso D, Cimmino A, Perna AF, Masella L, De Santo NG, De Bonis ML et al (2003) Folate treatment and unbalanced methylation and changes of allelic expression induced by hyperhomocysteinaemia in patients with uraemia. Lancet 361:1693–1699

    PubMed  CAS  Google Scholar 

  18. Pufulete M, Al-Ghnaniem R, Leather AJ, Appleby P, Gout S, Terry C et al (2003) Folate status, genomic DNA hypomethylation, and risk of colorectal adenoma and cancer: a case control study. Gastroenterology 124:1240–1248

    PubMed  CAS  Google Scholar 

  19. Pufulete M, Al-Ghnaniem R, Rennie JA, Appleby P, Harris N, Gout S et al (2005) Influence of folate status on genomic DNA methylation in colonic mucosa of subjects without colorectal adenoma or cancer. Br J Cancer 92:838–842

    PubMed  CAS  Google Scholar 

  20. Hsiung DT, Marsit CJ, Houseman EA, Eddy K, Furniss CS, McClean MD et al (2007) Global DNA methylation level in whole blood as a biomarker in head and neck squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev 16:108–114

    PubMed  Google Scholar 

  21. Christensen BC, Kelsey KT, Zheng S, Houseman EA, Marsit CJ, Wrensch MR et al (2010) Breast cancer DNA methylation profiles are associated with tumor size and alcohol and folate intake. PLoS Genet 6:e1001043

    PubMed  Google Scholar 

  22. Gluckman PD, Hanson MA, Buklijas T, Low FM, Beedle AS (2009) Epigenetic mechanisms that underpin metabolic and cardiovascular diseases. Nat Rev Endocrinol 5:401–408

    PubMed  CAS  Google Scholar 

  23. Kim M, Long TI, Arakawa K, Wang R, Yu MC, Laird PW (2010) DNA methylation as a biomarker for cardiovascular disease risk. PLoS One 5:e9692

    PubMed  Google Scholar 

  24. Papait R, Condorelli G (2010) Epigenetics in heart failure. Ann N Y Acad Sci 1188:159–164

    PubMed  Google Scholar 

  25. Hathcock JN (1997) Vitamins and minerals: efficacy and safety. Am J Clin Nutr 66:427–437

    PubMed  CAS  Google Scholar 

  26. Tchantchou F, Graves M, Falcone D, Shea TB (2008) S-adenosylmethionine mediates glutathione efficacy by increasing glutathione S-transferase activity: implications for S-adenosyl methionine as a neuroprotective dietary supplement. J Alzheimers Dis 14:323–328

    PubMed  CAS  Google Scholar 

  27. Hillman RS, Steinberg SE (1982) The effects of alcohol on folate metabolism. Annu Rev Med 33:345–354

    PubMed  CAS  Google Scholar 

  28. Dumitrescu RG, Shields PG (2005) The etiology of alcohol-induced breast cancer. Alcohol 35:213–225

    PubMed  CAS  Google Scholar 

  29. Kharbanda KK (2009) Alcoholic liver disease and methionine metabolism. Semin Liver Dis 29:155–165

    PubMed  CAS  Google Scholar 

  30. International Agency for Research on Cancer (1988) Alcohol drinking, vol 44. IARC, Lyon

    Google Scholar 

  31. Giovannucci E, Rimm EB, Ascherio A, Stampfer MJ, Colditz GA, Willett WC (1995) Alcohol, low-methionine–low-folate diets, and risk of colon cancer in men. J Natl Cancer Inst 87:265–273

    PubMed  CAS  Google Scholar 

  32. Schernhammer ES, Giovannucci E, Kawasaki T, Rosner B, Fuchs CS, Ogino S (2010) Dietary folate, alcohol and B vitamins in relation to LINE-1 hypomethylation in colon cancer. Gut 59:794–799

    PubMed  CAS  Google Scholar 

  33. Smith IM, Mydlarz WK, Mithani SK, Califano JA (2007) DNA global hypomethylation in squamous cell head and neck cancer associated with smoking, alcohol consumption and stage. Int J Cancer 121:1724–1728

    PubMed  CAS  Google Scholar 

  34. Marsit CJ, Christensen BC, Houseman EA, Karagas MR, Wrensch MR, Yeh RF et al (2009) Epigenetic profiling reveals etiologically distinct patterns of DNA methylation in head and neck squamous cell carcinoma. Carcinogenesis 30:416–422

    PubMed  CAS  Google Scholar 

  35. Avissar M, McClean MD, Kelsey KT, Marsit CJ (2009) MicroRNA expression in head and neck cancer associates with alcohol consumption and survival. Carcinogenesis 30:2059–2063

    PubMed  CAS  Google Scholar 

  36. Hamajima N, Hirose K, Tajima K, Rohan T, Calle EE, Heath CW Jr et al (2002) Alcohol, tobacco and breast cancer–collaborative reanalysis of individual data from 53 epidemiological studies, including 58,515 women with breast cancer and 95,067 women without the disease. Br J Cancer 87:1234–1245

    PubMed  Google Scholar 

  37. Key J, Hodgson S, Omar RZ, Jensen TK, Thompson SG, Boobis AR et al (2006) Meta-analysis of studies of alcohol and breast cancer with consideration of the methodological issues. Cancer Causes Control 17:759–770

    PubMed  Google Scholar 

  38. Park PH, Miller R, Shukla SD (2003) Acetylation of histone H3 at lysine 9 by ethanol in rat hepatocytes. Biochem Biophys Res Commun 306:501–504

    PubMed  CAS  Google Scholar 

  39. Kim JS, Shukla SD (2006) Acute in vivo effect of ethanol (binge drinking) on histone H3 modifications in rat tissues. Alcohol Alcohol 41:126–132

    PubMed  CAS  Google Scholar 

  40. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102:10604–10609

    PubMed  CAS  Google Scholar 

  41. Issa JP, Ottaviano YL, Celano P, Hamilton SR, Davidson NE, Baylin SB (1994) Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat Genet 7:536–540

    PubMed  CAS  Google Scholar 

  42. Richardson B (2003) Impact of aging on DNA methylation. Ageing Res Rev 2:245–261

    PubMed  CAS  Google Scholar 

  43. Kwabi-Addo B, Chung W, Shen L, Ittmann M, Wheeler T, Jelinek J et al (2007) Age-related DNA methylation changes in normal human prostate tissues. Clin Cancer Res 13:3796–3802

    PubMed  CAS  Google Scholar 

  44. Shen L, Kondo Y, Rosner GL, Xiao L, Hernandez NS, Vilaythong J et al (2005) MGMT promoter methylation and field defect in sporadic colorectal cancer. J Natl Cancer Inst 97:1330–1338

    PubMed  CAS  Google Scholar 

  45. Bjornsson HT, Sigurdsson MI, Fallin MD, Irizarry RA, Aspelund T, Cui H et al (2008) Intra-individual change over time in DNA methylation with familial clustering. Jama 299:2877–2883

    PubMed  CAS  Google Scholar 

  46. Fraga MF, Agrelo R, Esteller M (2007) Cross-talk between aging and cancer: the epigenetic language. Ann N Y Acad Sci 1100:60–74

    PubMed  CAS  Google Scholar 

  47. Agrawal A, Tay J, Yang GE, Agrawal S, Gupta S (2010) Age-associated epigenetic modifications in human DNA increase its immunogenicity. Aging (Albany NY) 2:93–100

    CAS  Google Scholar 

  48. Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL et al (2009) Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet 5:e1000602

    PubMed  Google Scholar 

  49. Issa JP (2003) Age-related epigenetic changes and the immune system. Clin Immunol 109:103–108

    PubMed  CAS  Google Scholar 

  50. Tra J, Kondo T, Lu Q, Kuick R, Hanash S, Richardson B (2002) Infrequent occurrence of age-dependent changes in CpG island methylation as detected by restriction landmark genome scanning. Mech Ageing Dev 123:1487–1503

    PubMed  CAS  Google Scholar 

  51. Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Weisenberger DJ, Shen H et al (2010) Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res 20:440–446

    PubMed  CAS  Google Scholar 

  52. Minna JD, Roth JA, Gazdar AF (2002) Focus on lung cancer. Cancer Cell 1:49–52

    PubMed  CAS  Google Scholar 

  53. Belinsky SA (2005) Silencing of genes by promoter hypermethylation: key event in rodent and human lung cancer. Carcinogenesis 26:1481–1487

    PubMed  CAS  Google Scholar 

  54. Services USDoHaH (2004) The health consequences of smoking: a report of the surgeon general. Atlanta

    Google Scholar 

  55. Rocco JW, Sidransky D (2001) p16(MTS-1/CDKN2/INK4a) in cancer progression. Exp Cell Res 264:42–55

    PubMed  CAS  Google Scholar 

  56. Kim DH, Nelson HH, Wiencke JK, Zheng S, Christiani DC, Wain JC et al (2001) p16(INK4a) and histology-specific methylation of CpG islands by exposure to tobacco smoke in non-small cell lung cancer. Cancer Res 61:3419–3424

    PubMed  CAS  Google Scholar 

  57. Toyooka S, Maruyama R, Toyooka KO, McLerran D, Feng Z, Fukuyama Y et al (2003) Smoke exposure, histologic type and geography-related differences in the methylation profiles of non-small cell lung cancer. Int J Cancer 103:153–160

    PubMed  CAS  Google Scholar 

  58. Divine KK, Pulling LC, Marron-Terada PG, Liechty KC, Kang T, Schwartz AG et al (2005) Multiplicity of abnormal promoter methylation in lung adenocarcinomas from smokers and never smokers. Int J Cancer 114:400–405

    PubMed  CAS  Google Scholar 

  59. Hou M, Morishita Y, Iljima T, Inadome Y, Mase K, Dai Y et al (1999) DNA methylation and expression of p16(INK4A) gene in pulmonary adenocarcinoma and anthracosis in background lung. Int J Cancer 84:609–613

    PubMed  CAS  Google Scholar 

  60. Marsit CJ, Kim DH, Liu M, Hinds PW, Wiencke JK, Nelson HH et al (2005) Hypermethylation of RASSF1A and BLU tumor suppressor genes in non-small cell lung cancer: implications for tobacco smoking during adolescence. Int J Cancer 114:219–223

    PubMed  CAS  Google Scholar 

  61. Kim DH, Kim JS, Ji YI, Shim YM, Kim H, Han J et al (2003) Hypermethylation of RASSF1A promoter is associated with the age at starting smoking and a poor prognosis in primary non-small cell lung cancer. Cancer Res 63:3743–3746

    PubMed  CAS  Google Scholar 

  62. Wiencke JK, Kelsey KT (2002) Teen smoking, field cancerization, and a “critical period” hypothesis for lung cancer susceptibility. Environ Health Perspect 110:555–558

    PubMed  Google Scholar 

  63. Belinsky SA, Swafford DS, Middleton SK, Kennedy CH, Tesfaigzi J (1997) Deletion and differential expression of p16INK4a in mouse lung tumors. Carcinogenesis 18:115–120

    PubMed  CAS  Google Scholar 

  64. Herzog CR, Soloff EV, McDoniels AL, Tyson FL, Malkinson AM, Haugen-Strano A et al (1996) Homozygous codeletion and differential decreased expression of p15INK4b, p16INK4a-alpha and p16INK4a-beta in mouse lung tumor cells. Oncogene 13:1885–1891

    PubMed  CAS  Google Scholar 

  65. Vuillemenot BR, Pulling LC, Palmisano WA, Hutt JA, Belinsky SA (2004) Carcinogen exposure differentially modulates RAR-beta promoter hypermethylation, an early and frequent event in mouse lung carcinogenesis. Carcinogenesis 25:623–629

    PubMed  CAS  Google Scholar 

  66. Pulling LC, Vuillemenot BR, Hutt JA, Devereux TR, Belinsky SA (2004) Aberrant promoter hypermethylation of the death-associated protein kinase gene is early and frequent in murine lung tumors induced by cigarette smoke and tobacco carcinogens. Cancer Res 64:3844–3848

    PubMed  CAS  Google Scholar 

  67. Pulling LC, Klinge DM, Belinsky SA (2001) p16INK4a and beta-catenin alterations in rat liver tumors induced by NNK. Carcinogenesis 22:461–466

    PubMed  CAS  Google Scholar 

  68. Hasegawa M, Nelson HH, Peters E, Ringstrom E, Posner M, Kelsey KT (2002) Patterns of gene promoter methylation in squamous cell cancer of the head and neck. Oncogene 21:4231–4236

    PubMed  CAS  Google Scholar 

  69. Limsui D, Vierkant RA, Tillmans LS, Wang AH, Weisenberger DJ, Laird PW et al (2010) Cigarette smoking and colorectal cancer risk by molecularly defined subtypes. J Natl Cancer Inst 102:1012–1022

    PubMed  CAS  Google Scholar 

  70. Marsit CJ, Karagas MR, Danaee H, Liu M, Andrew A, Schned A et al (2006) Carcinogen exposure and gene promoter hypermethylation in bladder cancer. Carcinogenesis 27:112–116

    Google Scholar 

  71. Marsit CJ, Karagas MR, Andrew A, Liu M, Danaee H, Schned A, et al (2005) Epigenetic inactivation of SFRP genes and TP53 alteration act jointly as markers of invasive bladder cancer. Cancer Res 65:7081–7085

    Google Scholar 

  72. Zochbauer-Muller S, Lam S, Toyooka S, Virmani AK, Toyooka KO, Seidl S et al (2003) Aberrant methylation of multiple genes in the upper aerodigestive tract epithelium of heavy smokers. Int J Cancer 107:612–616

    PubMed  Google Scholar 

  73. Palmisano WA, Divine KK, Saccomanno G, Gilliland FD, Baylin SB, Herman JG et al (2000) Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res 60:5954–5958

    PubMed  CAS  Google Scholar 

  74. Belinsky SA, Nikula KJ, Palmisano WA, Michels R, Saccomanno G, Gabrielson E et al (1998) Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci USA 95:11891–11896

    PubMed  CAS  Google Scholar 

  75. Zochbauer-Muller S, Fong KM, Maitra A, Lam S, Geradts J, Ashfaq R et al (2001) 5’ CpG island methylation of the FHIT gene is correlated with loss of gene expression in lung and breast cancer. Cancer Res 61:3581–3585

    PubMed  CAS  Google Scholar 

  76. von Zeidler SV, Miracca EC, Nagai MA, Birman EG (2004) Hypermethylation of the p16 gene in normal oral mucosa of smokers. Int J Mol Med 14:807–811

    Google Scholar 

  77. Kersting M, Friedl C, Kraus A, Behn M, Pankow W, Schuermann M (2000) Differential frequencies of p16(INK4a) promoter hypermethylation, p53 mutation, and K-ras mutation in exfoliative material mark the development of lung cancer in symptomatic chronic smokers. J Clin Oncol 18:3221–3229

    PubMed  CAS  Google Scholar 

  78. Sozzi G, Pastorino U, Moiraghi L, Tagliabue E, Pezzella F, Ghirelli C et al (1998) Loss of FHIT function in lung cancer and preinvasive bronchial lesions. Cancer Res 58:5032–5037

    PubMed  CAS  Google Scholar 

  79. Kulkarni V, Saranath D (2004) Concurrent hypermethylation of multiple regulatory genes in chewing tobacco associated oral squamous cell carcinomas and adjacent normal tissues. Oral Oncol 40:145–153

    PubMed  CAS  Google Scholar 

  80. Maccani MA, Avissar-Whiting M, Banister CE, McGonnigal B, Padbury JF, Marsit CJ (2010) Maternal cigarette smoking during pregnancy is associated with downregulation of miR-16, miR-21 and miR-146a in the placenta. Epigenetics 5:583–589

    PubMed  CAS  Google Scholar 

  81. Kim DH, Nelson HH, Wiencke JK, Christiani DC, Wain JC, Mark EJ et al (2001) Promoter methylation of DAP-kinase: association with advanced stage in non-small cell lung cancer. Oncogene 20:1765–1770

    PubMed  CAS  Google Scholar 

  82. Pulling LC, Divine KK, Klinge DM, Gilliland FD, Kang T, Schwartz AG et al (2003) Promoter hypermethylation of the O6-methylguanine-DNA methyltransferase gene: more common in lung adenocarcinomas from never-smokers than smokers and associated with tumor progression. Cancer Res 63:4842–4848

    PubMed  CAS  Google Scholar 

  83. Marsit CJ, Liu M, Nelson HH, Posner M, Suzuki M, Kelsey KT (2004) Inactivation of the Fanconi anemia/BRCA pathway in lung and oral cancers: implications for treatment and survival. Oncogene 23:1000–1004

    PubMed  CAS  Google Scholar 

  84. Issa JP, Baylin SB, Belinsky SA (1996) Methylation of the estrogen receptor CpG island in lung tumors is related to the specific type of carcinogen exposure. Cancer Res 56:3655–3658

    PubMed  CAS  Google Scholar 

  85. Herbst AL, Ulfelder H, Poskanzer DC (1971) Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. N Engl J Med 284:878–881

    PubMed  CAS  Google Scholar 

  86. Bromer JG, Wu J, Zhou Y, Taylor HS (2009) Hypermethylation of homeobox A10 by in utero diethylstilbestrol exposure: an epigenetic mechanism for altered developmental programming. Endocrinology 150:3376–3382

    PubMed  CAS  Google Scholar 

  87. Newbold RR (2004) Lessons learned from perinatal exposure to diethylstilbestrol. Toxicol Appl Pharmacol 199:142–150

    PubMed  CAS  Google Scholar 

  88. Ruden DM, Xiao L, Garfinkel MD, Lu X (2005) Hsp90 and environmental impacts on epigenetic states: a model for the trans-generational effects of diethylstibesterol on uterine development and cancer. Hum Mol Genet 14:R149–155

    PubMed  CAS  Google Scholar 

  89. Vom Saal FS, Hughes C (2005) An extensive new literature concerning low-dose effects of bisphenol A shows the need for a new risk assessment. Environ Health Perspect 113:926–933

    Google Scholar 

  90. Kang JH, Kondo F, Katayama Y (2006) Human exposure to bisphenol A. Toxicology 226:79–89

    PubMed  CAS  Google Scholar 

  91. Schonfelder G, Wittfoht W, Hopp H, Talsness CE, Paul M, Chahoud I (2002) Parent bisphenol A accumulation in the human maternal-fetal-placental unit. Environ Health Perspect 110:A703–707

    PubMed  Google Scholar 

  92. Dolinoy DC, Huang D, Jirtle RL (2007) Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA 104:13056–13061

    PubMed  CAS  Google Scholar 

  93. Avissar-Whiting M, Veiga KR, Uhl KM, Maccani MA, Gagne LA, Moen EL et al (2010) Bisphenol A exposure leads to specific microRNA alterations in placental cells. Reprod Toxicol 29:401–406

    PubMed  CAS  Google Scholar 

  94. Bromer JG, Zhou Y, Taylor MB, Doherty L, Taylor HS (2010) Bisphenol-A exposure in utero leads to epigenetic alterations in the developmental programming of uterine estrogen response. FASEB J 24:2273–2280

    PubMed  CAS  Google Scholar 

  95. Weng YI, Hsu PY, Liyanarachchi S, Liu J, Deatherage DE, Huang YW et al (2010) Epigenetic influences of low-dose bisphenol A in primary human breast epithelial cells. Toxicol Appl Pharmacol 248:111–121

    Google Scholar 

  96. International Agency for Research on Cancer (1999) Benzene, vol 29. IARC, Lyon

    Google Scholar 

  97. Ye Y, Wang KK, Gu J, Yang H, Lin J, Ajani JA et al (2008) Genetic variations in microRNA-related genes are novel susceptibility loci for esophageal cancer risk. Cancer Prev Res(Phila Pa) 1:460–469

    CAS  Google Scholar 

  98. Bollati V, Baccarelli A, Hou L, Bonzini M, Fustinoni S, Cavallo D et al (2007) Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res 67:876–880

    PubMed  CAS  Google Scholar 

  99. Zhang L, McHale CM, Rothman N, Li G, Ji Z, Vermeulen R et al (2010) Systems biology of human benzene exposure. Chem Biol Interact 184:86–93

    PubMed  CAS  Google Scholar 

  100. McDonald JW, Taylor JA, Watson MA, Saccomanno G, Devereux TR (1995) p53 and K-ras in radon-associated lung adenocarcinoma. Cancer Epidemiol Biomarkers Prev 4:791–793

    PubMed  CAS  Google Scholar 

  101. Prise KM, Pinto M, Newman HC, Michael BD (2001) A review of studies of ionizing radiation-induced double-strand break clustering. Radiat Res 156:572–576

    PubMed  CAS  Google Scholar 

  102. Little JB (2000) Radiation carcinogenesis. Carcinogenesis 21:397–404

    PubMed  CAS  Google Scholar 

  103. Swafford DS, Middleton SK, Palmisano WA, Nikula KJ, Tesfaigzi J, Baylin SB et al (1997) Frequent aberrant methylation of p16INK4a in primary rat lung tumors. Mol Cell Biol 17:1366–1374

    PubMed  CAS  Google Scholar 

  104. Belinsky SA, Klinge DM, Liechty KC, March TH, Kang T, Gilliland FD et al (2004) Plutonium targets the p16 gene for inactivation by promoter hypermethylation in human lung adenocarcinoma. Carcinogenesis 25:1063–1067

    PubMed  CAS  Google Scholar 

  105. Romanenko A, Morell-Quadreny L, Lopez-Guerrero JA, Pellin A, Nepomnyaschy V, Vozianov A et al (2002) P16INK4A and p15INK4B gene alteration associated with oxidative stress in renal cell carcinomas after the chernobyl accident (pilot study). Diagn Mol Pathol 11:163–169

    PubMed  Google Scholar 

  106. Malumbres M, Perez de Castro I, Santos J, Melendez B, Mangues R, Serrano M et al (1997) Inactivation of the cyclin-dependent kinase inhibitor p15INK4b by deletion and de novo methylation with independence of p16INK4a alterations in murine primary T-cell lymphomas. Oncogene 14:1361–1370

    PubMed  CAS  Google Scholar 

  107. Malumbres M, Perez de Castro I, Santos J, Fernandez Piqueras J, Pellicer A (1999) Hypermethylation of the cell cycle inhibitor p15INK4b 3’-untranslated region interferes with its transcriptional regulation in primary lymphomas. Oncogene 18:385–396

    PubMed  CAS  Google Scholar 

  108. Cleary HJ, Boulton E, Plumb M (1999) Allelic loss and promoter hypermethylation of the p15INK4b gene features in mouse radiation-induced lymphoid – but not myeloid – leukaemias. Leukemia 13:2049–2052

    PubMed  CAS  Google Scholar 

  109. Rossman TG (2003) Mechanism of arsenic carcinogenesis: an integrated approach. Mutat Res 533:37–65

    PubMed  CAS  Google Scholar 

  110. Zhong CX, Mass MJ (2001) Both hypomethylation and hypermethylation of DNA associated with arsenite exposure in cultures of human cells identified by methylation-sensitive ­arbitrarily-primed PCR. Toxicol Lett 122:223–234

    PubMed  CAS  Google Scholar 

  111. Mass MJ, Wang L (1997) Arsenic alters cytosine methylation patterns of the promoter of the tumor suppressor gene p53 in human lung cells: a model for a mechanism of carcinogenesis. Mutat Res 386:263–277

    PubMed  CAS  Google Scholar 

  112. Zhao CQ, Young MR, Diwan BA, Coogan TP, Waalkes MP (1997) Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proc Natl Acad Sci USA 94:10907–10912

    PubMed  CAS  Google Scholar 

  113. Okoji RS, Yu RC, Maronpot RR, Froines JR (2002) Sodium arsenite administration via drinking water increases genome-wide and Ha-ras DNA hypomethylation in methyl-deficient C57BL/6J mice. Carcinogenesis 23:777–785

    PubMed  CAS  Google Scholar 

  114. McDorman EW, Collins BW, Allen JW (2002) Dietary folate deficiency enhances induction of micronuclei by arsenic in mice. Environ Mol Mutagen 40:71–77

    PubMed  CAS  Google Scholar 

  115. Chanda S, Dasgupta UB, Guhamazumder D, Gupta M, Chaudhuri U, Lahiri S et al (2006) DNA hypermethylation of promoter of gene p53 and p16 in arsenic-exposed people with and without malignancy. Toxicol Sci 89:431–437

    PubMed  CAS  Google Scholar 

  116. Majumdar S, Chanda S, Ganguli B, Mazumder DN, Lahiri S, Dasgupta UB (2010) Arsenic exposure induces genomic hypermethylation. Environ Toxicol 25:315–318

    PubMed  CAS  Google Scholar 

  117. Pilsner JR, Liu X, Ahsan H, Ilievski V, Slavkovich V, Levy D et al (2007) Genomic methy­lation of peripheral blood leukocyte DNA: influences of arsenic and folate in Bangladeshi adults. Am J Clin Nutr 86:1179–1186

    PubMed  CAS  Google Scholar 

  118. Gamble MV, Liu X, Slavkovich V, Pilsner JR, Ilievski V, Factor-Litvak P et al (2007) Folic acid supplementation lowers blood arsenic. Am J Clin Nutr 86:1202–1209

    PubMed  CAS  Google Scholar 

  119. Hall M, Gamble M, Slavkovich V, Liu X, Levy D, Cheng Z et al (2007) Determinants of arsenic metabolism: blood arsenic metabolites, plasma folate, cobalamin, and homocysteine concentrations in maternal-newborn pairs. Environ Health Perspect 115:1503–1509

    PubMed  CAS  Google Scholar 

  120. Pilsner JR, Liu X, Ahsan H, Ilievski V, Slavkovich V, Levy D et al (2009) Folate deficiency, hyperhomocysteinemia, low urinary creatinine, and hypomethylation of leukocyte DNA are risk factors for arsenic-induced skin lesions. Environ Health Perspect 117:254–260

    PubMed  CAS  Google Scholar 

  121. Marsit CJ, Eddy K, Kelsey KT (2006) MicroRNA responses to cellular stress. Cancer Res 66:10843–10848

    PubMed  CAS  Google Scholar 

  122. Ramirez T, Brocher J, Stopper H, Hock R (2008) Sodium arsenite modulates histone acetylation, histone deacetylase activity and HMGN protein dynamics in human cells. Chromosoma 117:147–157

    PubMed  CAS  Google Scholar 

  123. Broday L, Peng W, Kuo MH, Salnikow K, Zoroddu M, Costa M (2000) Nickel compounds are novel inhibitors of histone H4 acetylation. Cancer Res 60:238–241

    PubMed  CAS  Google Scholar 

  124. Ke Q, Davidson T, Chen H, Kluz T, Costa M (2006) Alterations of histone modifications and transgene silencing by nickel chloride. Carcinogenesis 27:1481–1488

    PubMed  CAS  Google Scholar 

  125. Takiguchi M, Achanzar WE, Qu W, Li G, Waalkes MP (2003) Effects of cadmium on DNA-(Cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Exp Cell Res 286:355–365

    PubMed  CAS  Google Scholar 

  126. Bollati V, Marinelli B, Apostoli P, Bonzini M, Nordio F, Hoxha M et al (2010) Exposure to metal-rich particulate matter modifies the expression of candidate microRNAs in peripheral blood leukocytes. Environ Health Perspect 118:763–768

    PubMed  CAS  Google Scholar 

  127. Wright RO, Schwartz J, Wright RJ, Bollati V, Tarantini L, Park SK et al (2010) Biomarkers of lead exposure and DNA methylation within retrotransposons. Environ Health Perspect 118:790–795

    PubMed  CAS  Google Scholar 

  128. Pilsner JR, Lazarus AL, Nam DH, Letcher RJ, Sonne C, Dietz R et al (2010) Mercury-associated DNA hypomethylation in polar bear brains via the LUminometric Methylation Assay: a sensitive method to study epigenetics in wildlife. Mol Ecol 19:307–314

    PubMed  CAS  Google Scholar 

  129. Gibb HJ, Lees PS, Pinsky PF, Rooney BC (2000) Lung cancer among workers in chromium chemical production. Am J Ind Med 38:115–126

    PubMed  CAS  Google Scholar 

  130. Zhitkovich A, Shrager S, Messer J (2000) Reductive metabolism of Cr(VI) by cysteine leads to the formation of binary and ternary Cr–DNA adducts in the absence of oxidative DNA damage. Chem Res Toxicol 13:1114–1124

    PubMed  CAS  Google Scholar 

  131. Shi H, Hudson LG, Liu KJ (2004) Oxidative stress and apoptosis in metal ion-induced carcinogenesis. Free Radic Biol Med 37:582–593

    PubMed  CAS  Google Scholar 

  132. Kondo K, Takahashi Y, Hirose Y, Nagao T, Tsuyuguchi M, Hashimoto M et al (2006) The reduced expression and aberrant methylation of p16(INK4a) in chromate workers with lung cancer. Lung Cancer 53:295–302

    PubMed  Google Scholar 

  133. Schnekenburger M, Talaska G, Puga A (2007) Chromium cross-links histone deacetylase 1-DNA methyltransferase 1 complexes to chromatin, inhibiting histone-remodeling marks critical for transcriptional activation. Mol Cell Biol 27:7089–7101

    PubMed  CAS  Google Scholar 

  134. Vineis P, Husgafvel-Pursiainen K (2005) Air pollution and cancer: biomarker studies in human populations. Carcinogenesis 26:1846–1855

    PubMed  CAS  Google Scholar 

  135. Samet JM, Dominici F, Curriero FC, Coursac I, Zeger SL (1987–1994) Fine particulate air pollution and mortality in 20 U.S. cities, 1987–1994. N Engl J Med 343:1742–1749

    Google Scholar 

  136. Belinsky SA, Snow SS, Nikula KJ, Finch GL, Tellez CS, Palmisano WA (2002) Aberrant CpG island methylation of the p16(INK4a) and estrogen receptor genes in rat lung tumors induced by particulate carcinogens. Carcinogenesis 23:335–339

    PubMed  CAS  Google Scholar 

  137. Jardim MJ, Fry RC, Jaspers I, Dailey L, Diaz-Sanchez D (2009) Disruption of microRNA expression in human airway cells by diesel exhaust particles is linked to tumorigenesis-associated pathways. Environ Health Perspect 117:1745–1751

    PubMed  CAS  Google Scholar 

  138. Tarantini L, Bonzini M, Apostoli P, Pegoraro V, Bollati V, Marinelli B et al (2009) Effects of particulate matter on genomic DNA methylation content and iNOS promoter methylation. Environ Health Perspect 117:217–222

    PubMed  CAS  Google Scholar 

  139. Baccarelli A, Wright RO, Bollati V, Tarantini L, Litonjua AA, Suh HH et al (2009) Rapid DNA methylation changes after exposure to traffic particles. Am J Respir Crit Care Med 179:572–578

    PubMed  CAS  Google Scholar 

  140. Ren C, Park SK, Vokonas PS, Sparrow D, Wilker E, Baccarelli A et al (2010) Air pollution and homocysteine: more evidence that oxidative stress-related genes modify effects of particulate air pollution. Epidemiology 21:198–206

    PubMed  Google Scholar 

  141. Baccarelli A, Zanobetti A, Martinelli I, Grillo P, Hou L, Lanzani G et al (2007) Air pollution, smoking, and plasma homocysteine. Environ Health Perspect 115:176–181

    PubMed  CAS  Google Scholar 

  142. Wilker EH, Baccarelli A, Suh H, Vokonas P, Wright RO, Schwartz J (2010) Black carbon exposures, blood pressure, and interactions with single nucleotide polymorphisms in MicroRNA processing genes. Environ Health Perspect 118:943–948

    PubMed  CAS  Google Scholar 

  143. Robinson BW, Lake RA (2005) Advances in malignant mesothelioma. N Engl J Med 353:1591–1603

    PubMed  CAS  Google Scholar 

  144. Sugarbaker DJ, Richards WG, Gordon GJ, Dong L, De Rienzo A, Maulik G et al (2008) Transcriptome sequencing of malignant pleural mesothelioma tumors. Proc Natl Acad Sci USA 105:3521–3526

    PubMed  CAS  Google Scholar 

  145. He B, Lee AY, Dadfarmay S, You L, Xu Z, Reguart N et al (2005) Secreted frizzled-related protein 4 is silenced by hypermethylation and induces apoptosis in beta-catenin-deficient human mesothelioma cells. Cancer Res 65:743–748

    PubMed  CAS  Google Scholar 

  146. Hirao T, Bueno R, Chen CJ, Gordon GJ, Heilig E, Kelsey KT (2002) Alterations of the p16(INK4) locus in human malignant mesothelial tumors. Carcinogenesis 23:1127–1130

    PubMed  CAS  Google Scholar 

  147. Lee AY, He B, You L, Dadfarmay S, Xu Z, Mazieres J et al (2004) Expression of the secreted frizzled-related protein gene family is downregulated in human mesothelioma. Oncogene 23:6672–6676

    PubMed  CAS  Google Scholar 

  148. Ohta Y, Shridhar V, Kalemkerian GP, Bright RK, Watanabe Y, Pass HI (1999) Thrombospondin-1 expression and clinical implications in malignant pleural mesothelioma. Cancer 85:2570–2576

    PubMed  CAS  Google Scholar 

  149. Tsou JA, Galler JS, Wali A, Ye W, Siegmund KD, Groshen S et al (2007) DNA methy­lation profile of 28 potential marker loci in malignant mesothelioma. Lung Cancer 58:220–230

    PubMed  Google Scholar 

  150. Christensen BC, Godleski JJ, Marsit CJ, Houseman EA, Lopez-Fagundo CY, Longacker JL et al (2008) Asbestos exposure predicts cell cycle control gene promoter methylation in pleural mesothelioma. Carcinogenesis 29:1555–1559

    PubMed  CAS  Google Scholar 

  151. Christensen BC, Houseman EA, Godleski JJ, Marsit CJ, Longacker JL, Roelofs CR et al (2009) Epigenetic profiles distinguish pleural mesothelioma from normal pleura and predict lung asbestos burden and clinical outcome. Cancer Res 69:227–234

    PubMed  CAS  Google Scholar 

  152. Feinberg AP, Cui H, Ohlsson R (2002) DNA methylation and genomic imprinting: insights from cancer into epigenetic mechanisms. Semin Cancer Biol 12:389–398

    PubMed  CAS  Google Scholar 

  153. Feinberg AP (2000) DNA methylation, genomic imprinting and cancer. Curr Top Microbiol Immunol 249:87–99

    PubMed  CAS  Google Scholar 

  154. Feinberg AP (2004) The epigenetics of cancer etiology. Semin Cancer Biol 14:427–432

    PubMed  CAS  Google Scholar 

  155. Wolffe AP (2000) Transcriptional control: imprinting insulation. Curr Biol 10:R463–465

    PubMed  CAS  Google Scholar 

  156. Tilghman SM (1999) The sins of the fathers and mothers: genomic imprinting in mammalian development. Cell 96:185–193

    PubMed  CAS  Google Scholar 

  157. Dean W, Bowden L, Aitchison A, Klose J, Moore T, Meneses JJ et al (1998) Altered imprinted gene methylation and expression in completely ES cell-derived mouse fetuses: association with aberrant phenotypes. Development 125:2273–2282

    PubMed  CAS  Google Scholar 

  158. Doherty AS, Mann MR, Tremblay KD, Bartolomei MS, Schultz RM (2000) Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol Reprod 62:1526–1535

    PubMed  CAS  Google Scholar 

  159. Khosla S, Dean W, Brown D, Reik W, Feil R (2001) Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol Reprod 64:918–926

    PubMed  CAS  Google Scholar 

  160. Young LE, Sinclair KD, Wilmut I (1998) Large offspring syndrome in cattle and sheep. Rev Reprod 3:155–163

    PubMed  CAS  Google Scholar 

  161. Cox GF, Burger J, Lip V, Mau UA, Sperling K, Wu BL et al (2002) Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am J Hum Genet 71:162–164

    PubMed  CAS  Google Scholar 

  162. DeBaun MR, Niemitz EL, Feinberg AP (2003) Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet 72:156–160

    PubMed  CAS  Google Scholar 

  163. Cruz-Correa M, Cui H, Giardiello FM, Powe NR, Hylind L, Robinson A et al (2004) Loss of imprinting of insulin growth factor II gene: a potential heritable biomarker for colon neoplasia predisposition. Gastroenterology 126:964–970

    PubMed  CAS  Google Scholar 

  164. Rakyan VK, Down TA, Maslau S, Andrew T, Yang TP, Beyan H et al (2010) Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res 20:434–439

    PubMed  CAS  Google Scholar 

  165. Jones PA, Liang G (2009) Rethinking how DNA methylation patterns are maintained. Nat Rev Genet 10:805–811

    PubMed  CAS  Google Scholar 

  166. Masuda T, Shinoara H, Kondo M (1975) Reactions of hydroxyl radicals with nucleic acid bases and the related compounds in gamma-irradiated aqueous solution. J Radiat Res (Tokyo) 16:153–161

    CAS  Google Scholar 

  167. Valinluck V, Tsai HH, Rogstad DK, Burdzy A, Bird A, Sowers LC (2004) Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res 32:4100–4108

    PubMed  CAS  Google Scholar 

  168. Valinluck V, Sowers LC (2007) Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res 67:946–950

    PubMed  CAS  Google Scholar 

  169. Henderson JP, Byun J, Takeshita J, Heinecke JW (2003) Phagocytes produce 5-chlorouracil and 5-bromouracil, two mutagenic products of myeloperoxidase, in human inflammatory tissue. J Biol Chem 278:23522–23528

    PubMed  CAS  Google Scholar 

  170. Turker MS (2002) Gene silencing in mammalian cells and the spread of DNA methylation. Oncogene 21:5388–5393

    PubMed  CAS  Google Scholar 

  171. Turker MS, Bestor TH (1997) Formation of methylation patterns in the mammalian genome. Mutat Res 386:119–130

    PubMed  CAS  Google Scholar 

  172. Sun FL, Elgin SC (1999) Putting boundaries on silence. Cell 99:459–462

    PubMed  CAS  Google Scholar 

  173. Robertson KD (2002) DNA methylation and chromatin – unraveling the tangled web. Oncogene 21:5361–5379

    PubMed  CAS  Google Scholar 

  174. Rountree MR, Bachman KE, Herman JG, Baylin SB (2001) DNA methylation, chromatin inheritance, and cancer. Oncogene 20:3156–3165

    PubMed  CAS  Google Scholar 

  175. Nguyen CT, Weisenberger DJ, Velicescu M, Gonzales FA, Lin JC, Liang G et al (2002) Histone H3-lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-aza-2’-deoxycytidine. Cancer Res 62:6456–6461

    PubMed  CAS  Google Scholar 

  176. Wiencke JK (2002) DNA adduct burden and tobacco carcinogenesis. Oncogene 21:7376–7391

    PubMed  CAS  Google Scholar 

  177. Memisoglu A, Samson L (2000) Base excision repair in yeast and mammals. Mutat Res 451:39–51

    PubMed  CAS  Google Scholar 

  178. Demple B, DeMott MS (2002) Dynamics and diversions in base excision DNA repair of oxidized abasic lesions. Oncogene 21:8926–8934

    PubMed  CAS  Google Scholar 

  179. Parsian AJ, Funk MC, Tao TY, Hunt CR (2002) The effect of DNA damage on the formation of protein/DNA complexes. Mutat Res 501:105–113

    PubMed  CAS  Google Scholar 

  180. Christensen BC, Houseman EA, Poage GM, Godleski JJ, Bueno R, Sugarbaker DJ et al (2010) Integrated profiling reveals a global correlation between epigenetic and genetic alterations in mesothelioma. Cancer Res 70:5686–5689

    PubMed  CAS  Google Scholar 

  181. Ehrlich M (2002) DNA methylation in cancer: too much, but also too little. Oncogene 21:5400–5413

    PubMed  CAS  Google Scholar 

  182. Florl AR, Lower R, Schmitz-Drager BJ, Schulz WA (1999) DNA methylation and expression of LINE-1 and HERV-K provirus sequences in urothelial and renal cell carcinomas. Br J Cancer 80:1312–1321

    PubMed  CAS  Google Scholar 

  183. Maloisel L, Rossignol JL (1998) Suppression of crossing-over by DNA methylation in Ascobolus. Genes Dev 12:1381–1389

    PubMed  CAS  Google Scholar 

  184. Dominguez-Bendala J, McWhir J (2004) Enhanced gene targeting frequency in ES cells with low genomic methylation levels. Transgenic Res 13:69–74

    PubMed  CAS  Google Scholar 

  185. Colot V, Rossignol JL (1999) Eukaryotic DNA methylation as an evolutionary device. Bioessays 21:402–411

    PubMed  CAS  Google Scholar 

  186. Pogribny IP, Basnakian AG, Miller BJ, Lopatina NG, Poirier LA, James SJ (1995) Breaks in genomic DNA and within the p53 gene are associated with hypomethylation in livers of folate/methyl-deficient rats. Cancer Res 55:1894–1901

    PubMed  CAS  Google Scholar 

  187. Machover D, Zittoun J, Saffroy R, Broet P, Giraudier S, Magnaldo T et al (2002) Treatment of cancer cells with methioninase produces DNA hypomethylation and increases DNA synthesis. Cancer Res 62:4685–4689

    PubMed  CAS  Google Scholar 

  188. Kim YI (2004) Folate and DNA methylation: a mechanistic link between folate deficiency and colorectal cancer? Cancer Epidemiol Biomarkers Prev 13:511–519

    PubMed  CAS  Google Scholar 

  189. Thilly WG (2003) Have environmental mutagens caused oncomutations in people? Nat Genet 34:255–259

    PubMed  CAS  Google Scholar 

  190. Slaughter DP, Southwick HW, Smejkal W (1953) Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer 6:963–968

    PubMed  CAS  Google Scholar 

  191. Schwartz DA, Freedman JH, Linney EA (2004) Environmental genomics: a key to understanding biology, pathophysiology and disease. Hum Mol Genet 13:R217–224

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brock C. Christensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Christensen, B.C., Marsit, C.J., Kelsey, K.T. (2012). Influence of Environmental Factors on the Epigenome. In: Michels, K. (eds) Epigenetic Epidemiology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2495-2_12

Download citation

Publish with us

Policies and ethics