Advertisement

Nano-Structured Solids and Heterogeneous Catalysts: Powerful Tools for the Reduction of CBRN Threats

Heterogeneous Catalysts Against CBRN Threats
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

In the field of non-conventional CBRN weapons, the recent rapid development of nanotechnology and catalysis over nanosized solids provides innovative tools for the detection, protection and decontamination against these threats. By improving the efficiency of the countermeasures and by minimizing the negative effects of a deliberate use of CBRN agents, the practical application of the new technologies will readily represent a step forward in lowering the vulnerability of the civilian populations and in preventing the use of mass destruction weapons by terrorist groups or by ‘rogue states’ supporting terrorists’ activity. In such scenario, some relevant examples of nanosystems applied to the defense from non-conventional warfare agents will be here presented and commented. The key role of nanotechnology and heterogeneous catalysis for a multidisciplinary approach in counteracting CBRN threats will be highlighted too.

Keywords

Nanotechnology Heterogeneous catalysis Mesoporous materials Non-conventional warfare agents Decontamination CBRN agent abatement 

Notes

Acknowledgements

The authors gratefully acknowledge Prof. A. K. Vaseashta, for the kind invitation to the NATO Advanced Study Institute held in Chisinau (Moldova). M.G. also thanks the Italian Ministry of Education, University and Research for financial support through the Project “ItalNanoNet” (Rete Nazionale di Ricerca sulle Nanoscienze; prot. no. RBPR05JH2P).

References

  1. 1.
    Gatti AM, Rivasi F (2002) Biocompatibility of micro- and nanoparticles. Part I: in liver and kidney. Biomaterials 23(11):2381CrossRefGoogle Scholar
  2. 2.
    Gatti AM, Montanari S (2008) Nanopathology: the health impact of nanoparticles. Pan Stanford, SingaporeGoogle Scholar
  3. 3.
    Barnard AS (2006) Nanohazards: knowledge is our first defence. Nat Mater 25:245MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Kostarelos K (2008) The long and short of carbon nanotube toxicity. Nat Biotechnol 26(7):774CrossRefGoogle Scholar
  5. 5.
    Guidotti M, Ranghieri M, Rossodivita (2010) Nanosystems and CBRN threats: a resource worth exploiting, a potential worth controlling. In: Trufanov A, Rossodivita A, Guidotti M (eds) Pandemics and bioterrorism – transdisciplinary information sharing for decision-making against biological threats, vol 62, NATO science for peace and security series – E: human and societal dynamics. IOS-Press, Amsterdam, pp 117–126Google Scholar
  6. 6.
    Reynolds JG, Hart BR (2004) Nanomaterials and their application to defense and homeland security. JOM 56(1):36ADSCrossRefGoogle Scholar
  7. 7.
    Bismuth C, Borron SW, Baud FJ, Barriot P (2004) Chemical weapons: documented use and compounds on the horizon. Toxicol Lett 149:11CrossRefGoogle Scholar
  8. 8.
    Altmann J, Gubrud M (2004) Anticipating military nanotechnology. IEEE Technol Soc Mag 23:33CrossRefGoogle Scholar
  9. 9.
    Psaro R, Guidotti M, Sgobba M (2008) Nanosystems. In: Bertini I (ed) Inorganic and bio-inorganic chemistry, vol II, Encyclopedia of life support systems (EOLSS). EOLSS Publishers Co. Ltd, Oxford, pp 256–307. ISBN 978-1-84826-665-0Google Scholar
  10. 10.
    Woolard DL, Trew RJ, Polla DL, Stroscio MA, Varshney U, Jensen J, Jensen JO, Lugli PO, Aono M (2008) Nanosensors for defense and security. IEEE Sens 8(5–6):641–646CrossRefGoogle Scholar
  11. 11.
    Ramaseshan R, Ramakrishna S (2007) Zinc titanate nanofibers for the detoxification of chemical warfare simulants. J Am Ceram Soc 90(6):1836CrossRefGoogle Scholar
  12. 12.
    Mahato TH, Prasad GK, Singh B, Batra K, Ganesan K (2010) Mesoporous manganese oxide nanobelts for decontamination of sarin, sulphur mustard and 2-(chloroethyl)ethylsulphide. Microporous Mesoporous Mater 132:15CrossRefGoogle Scholar
  13. 13.
    Mahato TH, Prasad GK, Singh B, Acharya J, Srivastava AR, Vijayaraghavan R (2009) Nanocrystalline zinc oxide for the decontamination of sarin. J Hazard Mater 165:928CrossRefGoogle Scholar
  14. 14.
    Panayotov DA, Morris JR (2009) Thermal decomposition of a chemical warfare agent simulant (DMMP) on TiO2: adsorbate reactions with lattice oxygen as studied by infrared spectroscopy. J Phys Chem C 113:15684CrossRefGoogle Scholar
  15. 15.
    Grandcolas M, Louvet A, Keller N, Keller V (2009) Layer-by-layer deposited titanate-based nanotubes for solar photocatalytic removal of chemical warfare agents from textiles. Angew Chem Int Ed 48:161CrossRefGoogle Scholar
  16. 16.
    Mattsson A, Lejon C, Stengl V, Bakardjieva S, Oplustil F, Andersson PO, Osterlund L (2009) Photodegradation of DMMP and CEES on zirconium doped titania nanoparticles. Appl Catal B Environ 92:401CrossRefGoogle Scholar
  17. 17.
    University of Arkansas Daily Headlines (2006). Nanowire-paper offers strength, flexibility, from August 22, 2006. http://nanotechwire.com/news.asp?nid=3385. Accessed 20 Oct 2011
  18. 18.
    Hobson ST, Braue EH, Lehnert EK, Klabunde KJ, Koper OP, Decker S (2001) Active topical skin protectants using reactive nanoparticles. US Patent US6403653 to US Department of the ArmyGoogle Scholar
  19. 19.
    FAST-ACT® NanoScale website. http://www.fast-act.com. Accessed 20 Oct 2011
  20. 20.
    Amitai G, Murata H, Andersen JD, Koepsel RR, Russell AJ (2010) Decontamination of chemical and biological warfare agents with a single multi-functional material. Biomaterials 31:4417CrossRefGoogle Scholar
  21. 21.
    Corma A (1997) From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev 97:2373CrossRefGoogle Scholar
  22. 22.
    Ringenbach CR, Livingston SR, Kumar D, Landry CC (2005) Vanadium-doped acid-prepared mesoporous silica: synthesis, characterization, and catalytic studies on the oxidation of a mustard gas analogue. Chem Mater 17:5580CrossRefGoogle Scholar
  23. 23.
    Livingston SR, Kumar D, Landry CC (2008) Oxidation of 2-chloroethyl ethyl sulfide using V-APMS. J Mol Catal A 283:52CrossRefGoogle Scholar
  24. 24.
    SAMMS Technical Summary Pacific northwest national laboratory. http://samms.pnl.gov/samms.pdf. Accessed 20 Oct 2011
  25. 25.
    Yantasee W, Fryxell GE, Lin Y, Wu H, Raymond KN, Xu J (2005) Nanostructured electrochemical sensors based on functionalized nanoporous silica for voltammetric analysis of lead, mercury, and copper. J Nanosci Nanotechnol 5:1537CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • M. Guidotti
    • 1
    • 2
  • A. Rossodivita
    • 3
  • M. C. Ranghieri
    • 2
  1. 1.CNR-Istituto di Scienze e Tecnologie MolecolariMilanItaly
  2. 2.1st Field UnitE.I.-S.M.O.M. Military CorpsMilanItaly
  3. 3.Dipartimento di CardiologiaOspedale S. Raffaele e Fondazione ScientificaMilanItaly

Personalised recommendations