Co-operative Gamma Ray Generation Stimulated by X-Ray Pulse

Co-operative Gamma Ray Generation
  • Nicolae A. Enaki
  • M. Turcan
  • N. Ciobanu
  • T. Rosca
  • Ashok Vaseashta
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)

Abstract

The second-order coherent function at two-photon cooperative emission is investigated. As was observed the co-operative generation of γ-ray light is possible if the duration of X-ray pulse is longer than the co-operative delay super-radiant time of gamma photons. In this case, the amplitude of the X-ray field is constant in the process of co-operative γ-photon emission and the quasi-energetic levels for the extended nuclei system are dressed. Achievement of viable two-photon sources of correlated photons in optical, X- and gamma-rays diapasons would have major impact applications in biological and medical diagnostics of bio-molecules, viruses etc.

Keywords

γ- and x- ray radiation Extended nuclei system Two-photon sources Cooperative emission 

References

  1. 1.
    Collins CB et al (1988) Depopulation of the isomeric state 180Tam by the reaction 180Tam(γ,γ′)180Ta. Phys Rev C 37:2267ADSCrossRefGoogle Scholar
  2. 2.
    Carroll JJ et al (1991) Photoexcitation of nuclear isomers by (γ,γ’) reactions. Phys Rev C 43:1238ADSCrossRefGoogle Scholar
  3. 3.
    Collins CB, Carroll JJ, Oganessian YuTs, Karamian SA (1997) Progress in the pumping of gamma-ray laser. Hyperfine Interact 107:141ADSCrossRefGoogle Scholar
  4. 4.
    Dicke RH (1954) Coherence in spontaneous radiation processes. Phys Rev 93:99ADSMATHCrossRefGoogle Scholar
  5. 5.
    Cheng Y, Xia B. Phase transition of trapped nuclear exciton of long-lived Rhodium Mossbauer States. http://arxiv.org/abs/0706.2628; Gamma standing wave in the photonic crystal of resonant Rh nuclei. http://arxiv.org/abs/0711.2776; Rhodium Mossbauer superradiance of observable gravitational effect. http://arxiv.org/abs/0707.0960
  6. 6.
    Cheng Y, Xia B, Chen CP (2009) Cooling effect in emissions of 103mRh excited by bremsstrahlung. Phys Scr 79:055703, 8 ppADSCrossRefGoogle Scholar
  7. 7.
    Enaki NA (1988) Superradiation from two-photon spontaneous decay. Sov Phys JETP 67:2033; Enaki NA, Macovei MA (1997) Cooperative emission in the process of cascade and dipole-forbidden transitions. Phys Rev A 56:3274Google Scholar
  8. 8.
    Lee YC, Lin DL (1969) Coherent enhancement of the natural Linewidth. Phys Rev 183:147; Coherent radiation from atoms in random motion. ibid 183:150; (1972) Renormalized frequency shift of coherent radiation. Phys Rev A 6:388Google Scholar
  9. 9.
    Marrus R, Schmieder RW (1972) Forbidden decays of hydrogenlike and heliumlike argon. Phys Rev A5:1160ADSGoogle Scholar
  10. 10.
    Van Dyck RS, Johnson CE, Shugart HA (1970) Radiative lifetime of the metastable 21S0 state of helium. Phys Rev Lett 25:1403ADSCrossRefGoogle Scholar
  11. 11.
    Vrehen QHF, Hikspoors HMJ, Gibbs HM (1976) Quantum beats in superfluorescence in atomic cesium. Phys Rev Lett 38:764ADSCrossRefGoogle Scholar
  12. 12.
    Collins CB et al (1990) Resonant excitation of the reaction 180Tam(γ,γ’)180Ta. Phys Rev C 42:1813ADSCrossRefGoogle Scholar
  13. 13.
    Enaki N, Macovei M (1999) Cooperative gamma-ray generation stimulated by X-ray pulse. In: Proceedings of the first international induced gamma emission workshop’97, August 16–20, Predeal, Romania, 603–614Google Scholar
  14. 14.
    Enaki NA, Mihalache D (1997) Two-photon cooperative emission in the presence of athermal electromagnetic field. Hyperfine Interact 107:333ADSCrossRefGoogle Scholar
  15. 15.
    Walker PM et al (1990) High-K barrier penetration in 174Hf: A challenge to K selection. Phys Rev Lett 65:416ADSCrossRefGoogle Scholar
  16. 16.
    Oganessian YuTs, Karamian SA (1997) K-mixing in nuclear reactions. Hyperfine Interact 107:43ADSCrossRefGoogle Scholar
  17. 17.
    Rekstad J, Tveter TS, Guttormsen M (1990) Chaos in nuclei and the K quantum number. Phys Rev Lett 65:2122ADSCrossRefGoogle Scholar
  18. 18.
    Caves CM, Schumaker BL (1985) New formalism for two-photon quantum optics. I. Quadrature phases and squeezed states. Phys Rev A 31:3068; Gery CC (1991) Correlated two-mode SU(1,1) coherent states: nonclassical properties. J Opt Soc Am B8:685Google Scholar
  19. 19.
    Perina J Jr, Saleh BEA, Teich MC (1998) Multiphoton absorption cross section and virtual-state spectroscopy for the entangled n-photon state. Phys Rev A57:3972ADSGoogle Scholar
  20. 20.
    Boto AN et al (2000) Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys Rev Lett 85:2733ADSCrossRefGoogle Scholar
  21. 21.
    Rivlin LA (1997) Gamma-ray lasing by free nuclei and bymatter-antimatter beams. In: Proceedings of the 1st international gamma-ray laser workshop, Predeal, Romania, Hyperfine Interact 107:57Google Scholar
  22. 22.
    Zadernovsky AA (1999) Two-quantum doppler-free induced gamma-emission. In: IGE ’97 Proceedings of the first international induced gamma emission workshop, vol 42. Predeal, RomaniaGoogle Scholar
  23. 23.
    Karamian SA, Collins CB, Carroll JJ, Adam J (1999) In: IGE ’97 Proceedings of the first international induced gamma emission workshop, vol 76. Predeal, RomaniaGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Nicolae A. Enaki
    • 1
  • M. Turcan
    • 1
  • N. Ciobanu
    • 1
  • T. Rosca
    • 1
  • Ashok Vaseashta
    • 2
  1. 1.Institute of Applied PhysicsAcademy of Sciences of MoldovaChisinauRepublic Of Moldova
  2. 2.Institute for Advanced Sciences ConvergenceNUARIHerndonUSA

Personalised recommendations