Lithographic Limit and Problems of Two-Photon Holograms in Quantum Optics: Application in Secured Communications

Quantum Communication and Holography
  • Nicolae A. Enaki
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)


The application of coherence proprieties of bimodal field in quantum lithography and quantum holography is proposed. The coherence effect between the photons from Stokes and anti-Stokes waves generated in Raman lasing emission is established. The application of Stokes and anti-Stokes bimodal coherent field in lithography and holography are given in according with the definition of amplitude and phase of such entangled states of light. The optical scheme of holographic representation of object in bimodal representation is proposed.


γ- and x-ray radiation Extended nuclei system Two-photon sources Cooperative emission 


  1. 1.
    Teich C et al (2001) Role of entanglement in two-photon imaging. Phys Rev Lett 87:123602ADSCrossRefGoogle Scholar
  2. 2.
    Glauber RJ (1963) Coherent and incoherent states of the radiation field. Phys Rev 131:2766MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Sudarshan ECG (1963) Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys Rev Lett 10:277MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    Belinskiĭ V, Klyshko DN (1993) The interference of light and the Bell’s theorem. Usp Fiz Nauk 163(8):1CrossRefGoogle Scholar
  5. 5.
    Pfister O, Brown WJ, Stenner MD, Gauthier DJ (2001) Polarization instabilities in a two-photon laser. Phys Rev Lett 86:4512ADSCrossRefGoogle Scholar
  6. 6.
    Boto AN et al (2000) Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys Rev Lett 85:2733ADSCrossRefGoogle Scholar
  7. 7.
    Marrus R, Schmieder RW (1972) Forbidden decays of hydrogenlike and helium-like argon. Phys Rev A 5:1160ADSCrossRefGoogle Scholar
  8. 8.
    Van Dyck RS, Johnson CE, Shugart HA (1970) Radiative lifetime of the metastable 21S0 state of helium. Phys Rev Lett 25:1403ADSCrossRefGoogle Scholar
  9. 9.
    Enaki NA (1988) Superradiance in two-photon spontaneous emission. Sov Phys JETP 67:2033Google Scholar
  10. 10.
    Enaki NA, Macovei MA (1999) Two-photon cooperative decay in a cavity in the presence of a thermalized electromagnetic field. JETP 88:633 [(1999) Zh Eksp Teor Fiz 115:1153]Google Scholar
  11. 11.
    Sorokin PP, Braslau N (1964) Some theoretical aspects of a proposed double quantum stimulated emission device. IBM J Res Dev 8:177; Prokhorov AM (1965) Science 10:828Google Scholar
  12. 12.
    Nikolaus B, Zhang D, Toschek P (1981) Two-photon laser. Phys Rev Lett 47:171ADSCrossRefGoogle Scholar
  13. 13.
    Brune M et al (1987) Realization of a two-photon maser oscillator. Phys Rev Lett 59:1899ADSCrossRefGoogle Scholar
  14. 14.
    Saleh BEA, Teich MC (1991) Fundamentals of photonics. Wiley, New York, p 947. ISBN 0-471-83965-5CrossRefGoogle Scholar
  15. 15.
    Polzik S et al (2008) Quantum memory for images: a quantum hologram. Phys Rev A 77:020302(R)Google Scholar
  16. 16.
    Bjork G et al (2002) Two-photon imaging and quantum holography. arXiv:quant-ph (Quantum-Physics)/0211120v1 19 Nov 2002Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institute of Applied PhysicsAcademy of Sciences of MoldovaChisinauRepublic of Moldova

Personalised recommendations