Integrative Convergence in Neuroscience: Trajectories, Problems, and the Need for a Progressive Neurobioethics

Convergence in Neuroscience – The Need for Neurobioethics
  • J. GiordanoEmail author
Conference paper
Part of the NATO Science for Peace and Security Series A: Chemistry and Biology book series (NAPSA)


The advanced integrative scientific convergence (AISC) model represents a viable approach to neuroscience. Beyond simple multi-disciplinarity, the AISC model unifies constituent scientific and technological fields to foster innovation, invention and new ways of addressing seemingly intractable questions. In this way, AISC can yield novel methods and foster new trajectories of knowledge and discovery, and yield new epistemologies. As stand-alone disciplines, each and all of the constituent fields generate practical and ethical issues, and their convergence may establish a unique set of both potential benefits and problems. To effectively attend to these contingencies requires pragmatic assessment of the actual capabilities and limits of neurofocal AISC, and an openness to what new knowledge and scientific/technological achievements may be produced, and how such outcomes can affect humanity, the human condition, society and the global environment. It is proposed that a progressive neurobioethics may be needed to establish both a meta-ethical framework upon which to structure ethical decisions, and a system and method of ethics that is inclusive, convergent and innovative, and in thus aligned with and meaningful to use of an AISC model in neuroscience.


Neuroscience Genetics Cyberscience Convergence Neuroethics 



This work was supported, in part by funding from NATO, grants from the Office of Naval Research and the Nour Foundation; the IGERT Program of the University of New Mexico, the William H. and Ruth Crane Schaefer Endowment, and ongoing subsidies provided by the Center for Neurotechnology Studies of the Potomac Institute for Policy Studies, USA. Thanks to Prof. A. Vaseashta PhD for continued collaboration in studies of integrative scientific convergence, and to Sherry Loveless for editorial assistance and graphic artistry.


  1. 1.
    Simonton DK (2004) Creativity in science: chance, logic, genius, and zeitgeist. Cambridge University Press, CambridgeGoogle Scholar
  2. 2.
    Valenstein ES (2005) The war of the soups and sparks. Columbia University Press, New YorkGoogle Scholar
  3. 3.
    Giordano J (2011) Stud Ethics Law Technol 5(1):1–9Google Scholar
  4. 4.
    Giordano J, Boswell MV, Benedikter R (2010) J Ethics Biol Eng Med 1(2):135–142Google Scholar
  5. 5.
    Lenk H (1963) Technokratie als Ideologie. Kohlhammer, StuttgartGoogle Scholar
  6. 6.
    Giordano J, DuRousseau D (2011) J Cog Technol 15(2):5–10Google Scholar
  7. 7.
    Cole S (1983) J Sociol 84:958–977Google Scholar
  8. 8.
    Brannigan A, Wanner RA (1983) Can J Sociol 8:135–151CrossRefGoogle Scholar
  9. 9.
    Giordano J, Olds J (2010) Am J Bioeth Neurosci 1(4):12–14Google Scholar
  10. 10.
    Drexler KE (1998) Nanosystems: molecular machinery, manufacturing and computation. Wiley, BaltimoreGoogle Scholar
  11. 11.
    Gabriel G, Gomez R, Bongard M, Benito N, Fernandez E, Villa R (2009) Biosens Bioelectron 4:1942–1948CrossRefGoogle Scholar
  12. 12.
    Giordano J, Akhouri R, McBride DK (2009) J Long Term Eff Med Implants 5(9):45–54Google Scholar
  13. 13.
    Grunwald A (2005) Sci Eng Ethics 11(2):187–201CrossRefGoogle Scholar
  14. 14.
    Hester RE, Harrison RM (2007) Nanotechnology: consequences for human health and the environment, vol 24, Issues in environmental science and technology. Royal Society of Chemistry Publishing, LondonGoogle Scholar
  15. 15.
    FitzGerald K, Wurzman R (2010) In: Giordano J, Gordijn B (eds) Scientific and philosophical perspectives in neuroethics. Cambridge University Press, CambridgeGoogle Scholar
  16. 16.
    Williams RB, Marchuk DA, Gadde KM et al (2003) Neuropsychopharmacology 28:533–541CrossRefGoogle Scholar
  17. 17.
    Harper PS, Clarke A (1990) Lancet 335:1205–1206CrossRefGoogle Scholar
  18. 18.
    Plomin R, McGuffin P (2003) Annu Rev Psychol 54:205–228CrossRefGoogle Scholar
  19. 19.
    Giordano J, Wurzman R (2008) Depress Mind Body 4(1):2–5Google Scholar
  20. 20.
    Walters LR (1986) Nature 320:225–227ADSCrossRefGoogle Scholar
  21. 21.
    Kitcher P (1996) The lives to come: the genetic revolution and human possibilities. Simon and Schuster, New YorkGoogle Scholar
  22. 22.
    Annas G (1993) JAMA 270:2346–2350CrossRefGoogle Scholar
  23. 23.
    Parens E (2004) Hastings Cent Rep 34(suppl1):S1–36Google Scholar
  24. 24.
    Burris S, Gostin LO (2004) In: Burley J, Harris J (eds) A companion to genethics. Blackwell, LondonGoogle Scholar
  25. 25.
    Wolf S (1995) J Med Ethics 23:345–349CrossRefGoogle Scholar
  26. 26.
    von Neumann J (1958) The computer and the brain. Yale University Press, New HavenzbMATHGoogle Scholar
  27. 27.
    McCulloch WS, Pitts W (1943) Bull Math Biophys 5:115–133MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Gigerenzer G, Goldstein DG (1996) Creat Res J 9(2/3):131–144Google Scholar
  29. 29.
    Culham JC (2006) In: Cabeza R, Kingstone A (eds) Handbook of functional neuroimaging of cognition. Cambridge University Press, CambridgeGoogle Scholar
  30. 30.
    Birbaumer N, Cohen LG (2007) J Physiol 579:621–636CrossRefGoogle Scholar
  31. 31.
    Hinterberger T, Widmann G, Lal TN et al (2008) Epilepsy Behav 13:300–306CrossRefGoogle Scholar
  32. 32.
    Rosenthal A et al (2010) J Biomed Inform 43(2):342–353CrossRefGoogle Scholar
  33. 33.
    Smith K et al (2004) NeuroImage 22(4):1646–1656CrossRefGoogle Scholar
  34. 34.
    Hassan U et al (2008) NeuroImage 39(2):693–706CrossRefGoogle Scholar
  35. 35.
    Vaseashta A (2012) Technological innovations in sensing and detection of chemical, biological, radiological, nuclear threats and ecological terrorism. Springer, DordrechtGoogle Scholar
  36. 36.
    Giordano J (2010) Synesis 1(1):2–4Google Scholar
  37. 37.
    Giordano J (2011) Hum Prospect 1(1):2–6MathSciNetGoogle Scholar
  38. 38.
    Racine E (2010) Pragmatic neuroethics. MIT Press, CambridgeGoogle Scholar
  39. 39.
    Roskies A (2002) Neuron 35:21–23CrossRefGoogle Scholar
  40. 40.
    Giordano J (2010) In: Giordano J, Gordijn B (eds) Scientific and philosophical perspectives in neuroethics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  41. 41.
    Giordano J (2011) AJOB Neurosci 3(2):9–13Google Scholar
  42. 42.
    Benedikter R, Giordano J, FitzGerald K (2010) J Futures 42(10):1102–1109CrossRefGoogle Scholar
  43. 43.
    Levy N (2001) AJOB Neurosci 3(2):1–7Google Scholar
  44. 44.
    Aristotle (1966) Nicomachean ethics (trans: Ross D). Oxford University Press, LondonGoogle Scholar
  45. 45.
    Giordano J (2009) Pain: mind, meaning and medicine. PPM Press, Glen FallsGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Center for Neurotechnology StudiesPotomac Institute for Policy StudiesArlingtonUSA
  2. 2.Oxford Centre for NeuroethicsUniversity of OxfordOxfordUK

Personalised recommendations