Skip to main content

Drag Reduction on External Surfaces Induced by Wall Waves

  • Conference paper
Direct and Large-Eddy Simulation VIII

Part of the book series: ERCOFTAC Series ((ERCO,volume 15))

  • 2773 Accesses

Abstract

Drag-reduction can be achieved by delaying of the onset of a turbulent flow as well as quenching turbulence itself. Due to the highly local nature of turbulent events and the rapid nature of breakdown a sensor-less (open-loop) strategy is highly preferable, since it prevents the necessity of large numbers of fast sensor/actuator combinations. Thus far, the success of the control strategies for boundary layer flows is limited and for bypass-transition none of the strategies has been successful. However, recent investigations indicate that sensorless (open-loop) control of transition to turbulence and drag reduction in turbulent flows is a feasible option.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Min, T., Kang, S.M., Speyer, J.L. & Kim, J. (2006). Sustained sub-laminar drag in a fully developed channel flow. J. Fluid Mech. 558, 309–318.

    Article  MATH  Google Scholar 

  2. Hoepffner, J., & Fukagata, K. (2009). Pumping or drag reduction? J. Fluid Mech. 635, 171–187.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bewley, T.R. (2009). A fundamental limit on the balance of power in a transpiration- controlled channel flow J. Fluid Mech. 632, 442–446.

    Article  MathSciNet  Google Scholar 

  4. Lee, C., Min, T. & Kim, J. (2008). Stability of channel flow subject to wall blowing and suction in the form of a traveling wave. Phys. Fluids 20, 101513.

    Article  Google Scholar 

  5. Du, Y. & Karniadakis, G.E. (2000). Suppressing wall turbulence by means of transverse traveling wave. Science, 288.

    Google Scholar 

  6. Quadrio, M., Ricco, P. & Viotti, C. (2009). Streamwise-traveling waves of spanwise wall velocity in a turbulent channel flow. J. Fluid Mech. 627, 161–178.

    Article  MathSciNet  MATH  Google Scholar 

  7. Schlatter, P., Brandt, L., Lange, H.C. de & Henningson, D.S. (2008). On streak breakdown in bypass transition. Phys. Fluids 20, 101505.

    Article  Google Scholar 

  8. Chevalier, M., Schlatter, P., Lundbladh, A. & Henningson, D.S. (2007). A Pseudo-Spectral Solver for Incompressible Boundary Layer Flows. Tech. Rep. TRITA-MEK 2007:07. Royal Institute of Technology (KTH), Dept. of Mechanics, Stockholm.

    Google Scholar 

  9. Schlatter, P., Stolz, S. & Kleiser, L. (2004). LES of transitional flows using the approximate deconvolution model. Int. J. Heat Fluid Flow, 25, 549–558.

    Article  Google Scholar 

  10. Taneda, S. (1977). Visual Study of unsteady separated flows around bodies, Progr. Aerosp. Sci. 17, 287–348.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. C. de Lange .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

de Lange, H.C., Brandt, L. (2011). Drag Reduction on External Surfaces Induced by Wall Waves. In: Kuerten, H., Geurts, B., Armenio, V., Fröhlich, J. (eds) Direct and Large-Eddy Simulation VIII. ERCOFTAC Series, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2482-2_69

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2482-2_69

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2481-5

  • Online ISBN: 978-94-007-2482-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics