High-order direct and large eddy simulations of turbulent flows in rotating cavities

  • E. Serre
Conference paper
Part of the ERCOFTAC Series book series (ERCO, volume 15)


The simulation of rotating cavities flows is a major issue in computational fluid dynamics and engineering applications such as disk drives used for digital disk storage in computers, automotive disk brakes, and especially in turbomachinery (see a review in (Owen and Rogers, 1995)).


Boundary Layer Large Eddy Simulation Direct Numerical Simulation Absolute Instability Kolmogorov Length Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andersson, H.I. and Lygren, M. (2006). LES of open rotor-stator flow, Int. J. Heat Fluid Flow, 27, 551–557. CrossRefGoogle Scholar
  2. 2.
    Crespo del Arco, E., Serre, E., Bontoux, P. and Launder, B.E. (2005). Stability, transition and turbulence in rotating cavities. In Advances in Fluid Mechanics (ed. M. RAHMAN), Dalhousie University Canada Series, 41:141–196. WIT press. Google Scholar
  3. 3.
    Davies, C. and Carpenter, P.W. (2003). Global behaviour corresponding to the absolute instability of the rotating-disk boundary layer. J. Fluid Mech., 486:287–329. MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Launder, B.E., Poncet, S. and Serre, E. (2010). Transition and turbulence in rotor-stator flows, Ann. Rev. Fluid. Mech., 42:229–248. CrossRefGoogle Scholar
  5. 5.
    Lingwood, R.J. (1997). Absolute instability of the Ekman layer and related rotating flows. J. Fluid Mech., 331:405–428. MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Littell, H.S. and Eaton, J.K. (1994). Turbulence characteristics of the boundary layer on a rotating disk. J. Fluid Mech., 266:175–207. CrossRefGoogle Scholar
  7. 7.
    Lygren, M. and Andersson, H. (2001). Turbulent flow between a rotating and a stationary disk, J. Fluid Mech., 426, 297–326. zbMATHCrossRefGoogle Scholar
  8. 8.
    Owen, J.M. and Rogers, R.H. (1995). Heat transfer in rotating-disk system. Wiley. Google Scholar
  9. 9.
    Pier, B. (2003). Finite amplitude crossflow vortices, secondary instability and transition in the rotating-disk boundary layer. J. Fluid Mech., 487:315–343. MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Serre, E., Crespo del Arco, E. and Bontoux, P. (2001). Annular and spiral patterns between a rotating and a stationary disk, J. Fluid Mech., 434,65–100. MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Séverac, E., Poncet, S., Serre, E. and Chauve, M.P. (2007). Large eddy simulation and measurements of turbulent enclosed rotor-stator flows. Phys. Fluids, 19:085113. CrossRefGoogle Scholar
  12. 12.
    Séverac, E. and Serre, E. (2007). A spectral vanishing viscosity LES model for the simulation of turbulent flows within rotating cavities. J. Comp. Phys., 226(2):1234–1255. zbMATHCrossRefGoogle Scholar
  13. 13.
    Tadmor, E. (1989). Convergence of spectral methods for nonlinear conservation laws. SIAM J. Numer. Anal., 26(1), 30. MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Viaud, B., Serre, E. and Chomaz, J.M. (2008). Elephant mode sitting on a rotating disk in an annulus. J. Fluid Mech., 598:451–464. MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Wu, X. and Squires, K.D. (2000). Prediction and investigation of the turbulent flow over a rotating disk. J. Fluid Mech., 418:231–264. zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.M2P2 UMR 6181, CNRSUniversite Aix-MarseilleMarseilleFrance

Personalised recommendations