Skip to main content

The use of Direct Numerical Simulations for solving industrial flow problems

  • Conference paper
Direct and Large-Eddy Simulation VIII

Part of the book series: ERCOFTAC Series ((ERCO,volume 15))

Abstract

At the end of the last decade it was shown that predictions by means of Direct Numerical Simulations (DNS) agree well with experimental results obtained with Laser Doppler Anemometry and Particle Image Velocimetry (see for example Eggels et al. (1994)) if weakly turbulent flows, i.e. low Reynolds numbers, are considered. In spite of the widely accepted merit of DNS for fundamental flow studies until now the technique could not shake off the prejudice that it is of little use for solving industrial flow problems. The reason might be that the required computational resources increase with approximately the third power of the Reynolds number and most of the industrially relevant flows, and in particular aircraft or vehicle aerodynamics, are characterized by very high Reynolds numbers. In this regard Spalart (1999) estimated in the year 1999, that it will take until 2080 for DNS to be applicable to such flows. However, in the last years we performed a number DNS-studies which are relevant for various industrial branches. The common objective of these incompressible flow simulations was to produce a reliable and comprehensive flow data base for the validation and improvement of corresponding Reynolds-averaged Navier-Stokes simulations (RANS). The latter rely on turbulence models which are known to perform well for simple shear flows but not in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Costa JJ, Oliveira LA and Blay D (1999) Test of several versions for the kω type turbulence modelling of internal mixed convection flows. Int. Jour. Heat and Mass Transfer 42.

    Google Scholar 

  2. Davidson L, Cokljat D, Fröhlich J et al (2003) (eds) LESFOIL Large Eddy Simulation of Flow Around a High Lift Airfoil, Notes in Numerical Fluid Mechanics, vol. 83, Springer.

    Google Scholar 

  3. Eggels JGM, Unger F, Weiss MH et al (1994) Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. J Fluid Mech. 268:175–209

    Article  Google Scholar 

  4. Günther G, Bosbach J, Pennecot J et al (2006) Experimental and numerical simulations of idealized aircraft cabin flows. Aerospace Science and Technology. 10:563–573.

    Article  Google Scholar 

  5. Karniadakis GE and Sherwin S (1999) Spectral/HP Element Methods for CFD. Oxford University Press.

    Google Scholar 

  6. Lin C-H, Horstmann RH, Ahlers MF et al (2005) Numerical Simulation of Airflow and Airborne Pathogen Transport in Aircraft Cabins Part I: Numerical Simulation of the Flow Field. In: Proc. of the ASHRAE winter meeting 2005, 755–763.

    Google Scholar 

  7. Lin C-H, Wu TT, Horstman RH et al (2006) Comparison of large eddy simulation predictions with particle image velocimetry data for airflow in a generic cabin model. HVAC&R Research, 12(3c):935–951.

    Article  Google Scholar 

  8. Shishkin A, Wagner C (2007) Direct Numerical Simulation of a Turbulent Flow Using a Spectral/hp Element Method. In: Notes on Numerical Fluid Mechanics and Multidisziplinary Design, 92, Springer Publisher, 405–412.

    Google Scholar 

  9. Shishkina O, Shishkin A and Wagner C (2008) Simulation of turbulent thermal convection in complicated domains. J Comput and Appl Maths, doi:10.1016/j.cam.2008.08.008.

    Google Scholar 

  10. Spalart PR (1999) Strategies for turbulence modeling and simulations. In: Rodi W and Laurence D (eds) Engineering Turbulence Modelling and Experiments-4, Elsevier Science Ltd., 3–17

    Google Scholar 

  11. Wagner C and Friedrich R (2004) Direct Numerical Simulation of momentum and heat transport in idealized Czochralski crystal growth configuration. IJHFF 25:431–443.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Wagner, C., Shishkin, A., Shishkina, O. (2011). The use of Direct Numerical Simulations for solving industrial flow problems. In: Kuerten, H., Geurts, B., Armenio, V., Fröhlich, J. (eds) Direct and Large-Eddy Simulation VIII. ERCOFTAC Series, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2482-2_63

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2482-2_63

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2481-5

  • Online ISBN: 978-94-007-2482-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics