Direct Numerical Simulation and Lagrangian Particle Tracking in turbulent Rayleigh Bénard convection

  • H. J. H. Clercx
  • V. Lavezzo
  • F. Toschi
Part of the ERCOFTAC Series book series (ERCO, volume 15)

Abstract

Over the past years, turbulent convection has been the subject of extensive studies (see e.g. Ahlers et al., 2009; Kunnen et al., 2008; Lohse and Xia, 2010), which attempted to determine the main flow features and the contribution of different parameters to the heat transfer in various geometries, but only few of them focused on Lagrangian statistics. Lagrangian tracking can put some light on the local properties of the flow by gathering information on the temperature and velocity fields along the particle trajectory (Schumacher, 2009; van Aartrijk and Clercx 2008). This, in particular, has direct relevance for many industrial and environmental applications where the fluid heat transfer is modified by the presence and deposition of particles on the walls (e.g. nuclear power plants, petrochemical multiphase reactors, cooling systems for electronic devices, pollutant dispersion in the atmospheric boundary layer, aerosol deposition etc.).

Keywords

Nusselt Number Rayleigh Number Direct Numerical Simulation Grid Resolution Tracer Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahlers, G., Grossman, S. and Lohse, D. (2009) Heat transfer and large scale dynamics in turbulent Rayleigh-Bènard convection. Rev. Mod. Phys., 81, 503–537. CrossRefGoogle Scholar
  2. 2.
    Benzi, R., Succi, S. and Vergassola, M. (1992) The Lattice Boltzmann equation: Theory and applications, Phys. Rep. 222, 145–197. CrossRefGoogle Scholar
  3. 3.
    Calzavarini, E., Toschi, F. and Tripiccione, R. (2002) Evidences of Bolgiano-Obhukhov scaling in three dimensional Rayleigh-Bénard convection. Phys. Rev. E, 66 016304. CrossRefGoogle Scholar
  4. 4.
    Chen, S. and Doolen, G.D. (1998) Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364. MathSciNetCrossRefGoogle Scholar
  5. 5.
    Kunnen, R.P.J., Clercx, H.J.H., Geurts, B.J., van Bokhoven, L.J.A., Akkermans, R.A.D. and Verzicco, R. (2008) Numerical and experimental investigation of structure-function scaling in turbulent Rayleigh-Bénard convection. Phys. Rev. E 77, 016302 1–13. Google Scholar
  6. 6.
    Lohse, D. and Xia, K. (2010) Small-Scale Properties of Turbulent Rayleigh-Bénard Convection. Annu. Rev. Fluid. Mech. Google Scholar
  7. 7.
    Schumacher, J. (2009) Lagrangian studies in convective turbulence. Phys. Rev. E 79, 056301. CrossRefGoogle Scholar
  8. 8.
    Shishkina O. and Wagner C. (2008) Analysis of sheet-like plumes in turbulent Rayleigh-Bénard convection. J. Fluid Mech. 599, 383–404. MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Succi, S. (2001) The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford Science Publications, Oxford. MATHGoogle Scholar
  10. 10.
    van Aartrijk, M. and Clercx, H.J.H. (2008) Preferential concentration of heavy particles in stably stratified turbulence. Phys. Rev. Lett. 100, 254501 1–4. Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • H. J. H. Clercx
    • 1
  • V. Lavezzo
  • F. Toschi
  1. 1.Department of Applied PhysicsEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations