Numerical simulations of rotating Rayleigh-Bénard convection

  • Richard J. A. M. Stevens
  • Herman J. H. Clercx
  • Detlef Lohse
Part of the ERCOFTAC Series book series (ERCO, volume 15)


The Rayleigh-Bénard (RB) system is relevant to astro- and geophysical phenomena, including convection in the ocean, the Earth’s outer core, and the outer layer of the Sun. The dimensionless heat transfer (the Nusselt number Nu) in the system depends on the Rayleigh number Ra=βgΔL 3/(νκ) and the Prandtl number Pr=ν/κ. Here, β is the thermal expansion coefficient, g the gravitational acceleration, Δ the temperature difference between the bottom and top, and ν and κ the kinematic viscosity and the thermal diffusivity, respectively. The rotation rate H is used in the form of the Rossby number Ro=(βgΔ/L)/(2H). The key question is: How does the heat transfer depend on rotation and the other two control parameters: Nu(Ra, Pr, Ro)? Here we will answer this question by giving a summary of our results presented in (Zhong et al., 2009; Stevens et al., 2009; Stevens et al., 2010).


Rayleigh Number Direct Numerical Simulation Thermal Boundary Layer Heat Transfer Enhancement Rossby Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.-Q. Zhong, R. J. A. M. Stevens, H. J. H. Clercx, R. Verzicco, D. Lohse, and G. Ahlers, Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating Rayleigh-Bénard convection, Phys. Rev. Lett. 102, 044502 (2009). CrossRefGoogle Scholar
  2. 2.
    R. J. A. M. Stevens, J.-Q. Zhong, H. J. H. Clercx, G. Ahlers, and D. Lohse, Transitions between turbulent states in rotating Rayleigh-Bénard convection, Phys. Rev. Lett. 103, 024503 (2009). CrossRefGoogle Scholar
  3. 3.
    R. J. A. M. Stevens, H. J. H. Clercx, and D. Lohse, Optimal Prandtl number for heat transfer in rotating Rayleigh-Bénard convection, New J. Phys. 12, 075005 (2010). CrossRefGoogle Scholar
  4. 4.
    E. Brown, D. Funfschilling, A. Nikolaenko, and G. Ahlers, Heat transport by turbulent Rayleigh-Bénard convection: Effect of finite top- and bottom conductivity, Phys. Fluids 17, 075108 (2005). CrossRefGoogle Scholar
  5. 5.
    R. J. A. M. Stevens, R. Verzicco, and D. Lohse, Radial boundary layer structure and Nusselt number in Rayleigh-Bénard convection, J. Fluid. Mech. 643, 495 (2010). zbMATHCrossRefGoogle Scholar
  6. 6.
    R. P. J. Kunnen, H. J. H. Clercx, and B. J. Geurts, Breakdown of large-scale circulation in turbulent rotating convection, Europhys. Lett. 84, 24001 (2008). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Richard J. A. M. Stevens
    • 1
  • Herman J. H. Clercx
  • Detlef Lohse
  1. 1.Dept. of Applied PhysicsUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations