Advertisement

Direct Numerical Simulation of highly turbulent premixed flames burning methane

  • Gordon Fru
  • Gábor Janiga
  • Dominique Thévenin
Part of the ERCOFTAC Series book series (ERCO, volume 15)

Abstract

The last century has witnessed soaring gas prices, deteriorating air quality and alarming global climate changes. In recent years, increasing concerns have been raised with respect to the environmental impacts of energy consumption via the combustion of fossil fuels, for instance in stationary power generation and transportation, emitting greenhouse gases and air pollutants. As a result, governments now set more and more stringent standards. Hence, it is essential to understand and improve combustion processes, in order to reduce fuel consumption and pollutant emissions as much as possible.

Keywords

Direct Numerical Simulation Probability Density Function Direct Numerical Simulation Data Burning Methane Normal Strain Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Poinsot and D. Veynante. Theoretical and numerical combustion. R. T. Edwards, second edition, 2005. Google Scholar
  2. 2.
    P. Moin and K. Mahesh. Annu. Rev. Fluid Mech., 30:539–578, 1998. MathSciNetCrossRefGoogle Scholar
  3. 3.
    H. Shalaby and D. Thévenin. Flow Turb. Comb., 84(3):357–367, 2010. zbMATHCrossRefGoogle Scholar
  4. 4.
    M. D. Smooke and V. Giovangigli. Formulation of the premixed and nonpremixed test problems, volume 384 of Lecture Notes in Physics, pages 1–28. Springer-Verlag, 1991. Google Scholar
  5. 5.
    S. James and F. A. Jaberi. Combust. Flame, 123:465–487, 2000. CrossRefGoogle Scholar
  6. 6.
    M. Klein, A. Sadiki, and J. Janicka. J. Comput. Phys., 186:652–665, 2003. zbMATHCrossRefGoogle Scholar
  7. 7.
    A. Kempf, M. Klein, and J. Janicka. Flow Turb. Comb., 74:67–84, 2005. zbMATHCrossRefGoogle Scholar
  8. 8.
    R. Hilbert and D. Thévenin. Combust. Flame, 138:175–187, 2004. CrossRefGoogle Scholar
  9. 9.
    N. Peters. Turbulent combustion. Cambridge University Press, 2000. zbMATHCrossRefGoogle Scholar
  10. 10.
    A. Laverdant. Technical Report RT 2/13635 DEFA, The French Aerospace Lab., ONERA, 2008. Google Scholar
  11. 11.
    A. Honein and P. Moin. J. Comput. Phys., 201:11–19, 2004. CrossRefGoogle Scholar
  12. 12.
    T. Poinsot and S. Lele. J. Comput. Phys., 101(1):104–129, 1992. MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    C. Zistl, R. Hilbert, G. Janiga, and D. Thévenin. Comput. Vis. Sci, 12:383–395, 2009. CrossRefGoogle Scholar
  14. 14.
    J. H. Chen, A. Choudhary, B. de Supinski, M. DeVries, E. R. Hawkes, S. Klasky, W. K. Liao, K. L. Ma, J. Mellor-Crummey, N. Podhorszki, R. Sankaran, S. Shende, and C. S. Yoo. Comput. Sci. Discov., 2:31, 2009. Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Lab. of Fluid Dynamics and Technical FlowsOtto-von-Guericke-Universität MagdeburgMagdeburgGermany

Personalised recommendations