Skip to main content

LES modeling and experimental measurement of boundary layer flow over multi-scale, fractal canopies

  • Conference paper
Direct and Large-Eddy Simulation VIII

Part of the book series: ERCOFTAC Series ((ERCO,volume 15))

  • 2790 Accesses

Abstract

In many regions the atmospheric surface layer is affected substantially by vegetation canopies. Most previous work has focused on effects of vegetated terrain characterized by a single length scale, e.g. a single obstruction of a particular size, or canopies consisting of plants, often modeled using a prescribed leaf-area density distribution with a characteristic dominant scale. It is well known, however, that typical flow obstructions such as canopies are characterized by a wide range of length scales, branches, sub-branches, etc. Yet, it is not known how to parameterize the effects of such multi-scale objects on the lower atmospheric dynamics. This work aims to study boundary layer flow over fractal, tree-like shapes. Fractals provide convenient idealizations of the inherently multi-scale character of vegetation geometries, within certain ranges of scales. Preliminary results from a large-eddy simulation (LES) and experimental study of a fractal tree canopy in a turbulent boundary layer are reported. The LES use Renormalized Numerical Simulation (Chester et al., 2007, J. Comp. Phys.) to provide subgrid parameterizations of drag forces from unresolved small-scale branches. Experiments aiming at understanding drag forces acting on fractal trees are performed in a water tunnel facility. Drag force measurements are obtained on a set of “pre-fractal” trees containing 1-5 branch generations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bou-Zeid, E., C. Meneveau, and M.B. Parlange, A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys. Fluids 17, 025105 (2005).

    Article  MathSciNet  Google Scholar 

  2. Chester S., C. Meneveau, and M.B. Parlange, Modeling turbulent flow over fractal trees with renormalized numerical simulation, J. of Comp. Phys. 222, 427–448 (2007).

    Article  MathSciNet  Google Scholar 

  3. Porté-Agel, F., C. Meneveau, and M.B. Parlange, A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer. J. Fluid Mech. 415, 261–284 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  4. Soranna, F., Y.C. Chow, O. Uzol, and J. Katz, The effect of inlet guide vanes wake impingement on the flow structure and turbulence around a rotor blade, J. Turbomachinery 128, 92–95 (2006).

    Article  Google Scholar 

  5. Uzol, O., C.Y. Chow, J. Katz and C. Meneveau, Unobstructed PIV measurements within an axial turbo-pump using liquid and blades with matched refractive indices, Experiments in Fluids 33, 909–919 (2002).

    Google Scholar 

  6. Mason, P. and D. Thompson, Stochastic backscatter in large-eddy simulations of boundary layers, J. Fluid Mech. 242, 51–78 (1992).

    Article  MATH  Google Scholar 

  7. Finnigan, J.J., Turbulence in Plant Canopies, Annual Review of Fluid Mechanics 32, 519–571 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Graham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Graham, J., Bai, K., Meneveau, C., Katz, J. (2011). LES modeling and experimental measurement of boundary layer flow over multi-scale, fractal canopies. In: Kuerten, H., Geurts, B., Armenio, V., Fröhlich, J. (eds) Direct and Large-Eddy Simulation VIII. ERCOFTAC Series, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2482-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2482-2_37

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2481-5

  • Online ISBN: 978-94-007-2482-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics