Spatially Variable Thresholding for Stochastic Coherent Adaptive LES

  • AliReza Nejadmalayeri
  • Oleg V. Vasilyev
  • Alexei Vezolainen
  • Giuliano De Stefano
Part of the ERCOFTAC Series book series (ERCO, volume 15)


The properties of wavelet transform, viz. the ability to identify and efficiently represent temporal/spatial coherent flow structures, self-adaptiveness, and de-noising, have made them attractive candidates for constructing multi-resolution variable fidelity schemes for simulations of turbulence (Schneider and Vasilyev, 2010). Stochastic Coherent Adaptive Large Eddy Simulation (SCALES) (Goldstein and Vasilyev, 2004) is the most recent wavelet-based methodology for numerical simulations of turbulent flows that resolves energy containing turbulent motions using wavelet multi-resolution decomposition and self-adaptivity. In this technique, the extraction of the most energetic structures is achieved using wavelet thresholding filter with a priori prescribed threshold level.


Large Eddy Simulation Isotropic Turbulence Wavelet Threshold Relaxation Time Parameter Energetic Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    De Stefano, G., Goldstein, D.E., Vasilyev, O.V.: On the role of sub-grid scale coherent modes in large eddy simulation. Journal of Fluid Mechanics 525, 263–274 (2005) zbMATHCrossRefGoogle Scholar
  2. 2.
    De Stefano, G., Vasilyev, O.V.: A fully adaptive wavelet-based approach to homogeneous turbulence simulation. Physics of Fluids, submitted (2010) Google Scholar
  3. 3.
    De Stefano, G., Vasilyev, O.V.: Stochastic coherent adaptive large eddy simulation of forced isotropic turbulence. Journal of Fluid Mechanics 646, 453–470 (2010) zbMATHCrossRefGoogle Scholar
  4. 4.
    De Stefano, G., Vasilyev, O.V., Goldstein, D.E.: Localized dynamic kinetic-energy-based models for stochastic coherent adaptive large eddy simulation. Physics of Fluids 20, 045102.1–045102.14 (2008) Google Scholar
  5. 5.
    Farge, M., Schneider, K., Kevlahan, N.K.R.: Non-gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis. Physics of Fluids 11(8), 2187–2201 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Goldstein, D.E., Vasilyev, O.V.: Stochastic coherent adaptive large eddy simulation method. Physics of Fluids 16(7), 2497–2513 (2004) MathSciNetCrossRefGoogle Scholar
  7. 7.
    Goldstein, D.E., Vasilyev, O.V., Kevlahan, N.K.R.: CVS and SCALES simulation of 3D isotropic turbulence. Journal of Turbulence 6(37), 1–20 (2005) MathSciNetGoogle Scholar
  8. 8.
    Lundgren, T.: Linearly forced isotropic turbulence. In: Annual Research Briefs, pp. 461–473. Center for Turbulence Research, NASA Ames/Stanford University (2003) Google Scholar
  9. 9.
    Meneveau, C., Lund, T.S., Cabot, W.H.: A lagrangian dynamic subgrid-scale model of turbulence. Journal of Fluid Mechanics 319, 353–385 (1996) zbMATHCrossRefGoogle Scholar
  10. 10.
    Schneider, K., Vasilyev, O.V.: Wavelet methods in computational fluid dynamics. Annual Review of Fluid Mechanics 42, 473–503 (2010) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Vasilyev, O.V., Bowman, C.: Second generation wavelet collocation method for the solution of partial differential equations. Journal of Computational Physics 165, 660–693 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Vasilyev, O.V., De Stefano, G., Goldstein, D.E., Kevlahan, N.K.R.: Lagrangian dynamic SGS model for SCALES of isotropic turbulence. Journal of Turbulence 9(11), 1–14 (2008) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • AliReza Nejadmalayeri
    • 1
  • Oleg V. Vasilyev
  • Alexei Vezolainen
  • Giuliano De Stefano
  1. 1.Department of Mechanical EngineeringUniversity of ColoradoBoulderUSA

Personalised recommendations