Direct simulations of wall-bounded turbulence

  • Javier Jiménez
  • Ricardo García-Mayoral
Part of the ERCOFTAC Series book series (ERCO, volume 15)


Direct simulations have become indispensable tools in turbulence research, and, in the last two decades, especially so for the study of wall-bounded turbulence. Early simulations dealt mostly with the viscous and buffer layers near the wall, because their Reynolds numbers had to be necessarily limited (Kim et al., 1987). They led very soon to a fairly complete description of the kinematics of this part of the flow (Robinson, 1991), and, later, to the qualitative understanding of their dynamics (Jiménez et al., 2005). While most of those studies were carried out in turbulent channels, the results are generally believed to apply to all attached wall-bounded turbulent flows, because the time scales of the near-wall region are too fast to interact strongly with the slower processes of the non-universal outer layers.


Boundary Layer Reynolds Number Buffer Layer Direct Numerical Simulation Turbulent Boundary Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Breugem, W.P., Boersma, B.J., Uittenbogaard, R.E.: The influence of wall permeability on turbulent channel flow. J. Fluid Mech. 562, 35–72 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Buschmann, M.H., Gad-el-Hakl, M.: Normal and cross-flow Reynolds stresses: differences between confined and semi-confined flows. Exp. in Fluids 49, 213–223 (2010) CrossRefGoogle Scholar
  3. 3.
    Choi, H., Moin, P., Kim, J.: Direct numerical simulation of turbulent flow over riblets. J. Fluid Mech. 255, 503–539 (1993) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Erm, L.P., Joubert, P.N.: Low-Reynolds-number turbulent boundary layers. J. Fluid Mech. 230, 1–44 (1991) CrossRefGoogle Scholar
  5. 5.
    Finnigan, J.: Turbulence in plant canopies. Ann. Rev. Fluid Mech. 32, 519–571 (2000) CrossRefGoogle Scholar
  6. 6.
    García-Mayoral, R., Jiménez, J.: Hydrodynamic stability and the breakdown of the viscous regime over riblets. J. Fluid Mech. (Submitted) Google Scholar
  7. 7.
    Goldstein, D.B., Tuan, T.C.: Secondary flow induced by riblets. J. Fluid Mech. 363, 115–151 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Hutchins, N., Marusic, I.: Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 467–477 (2007) MathSciNetCrossRefGoogle Scholar
  9. 9.
    Jiménez, J., del Álamo, J.C., Flores, O.: The large-scale dynamics of near-wall turbulence. J. Fluid Mech. 505, 179–199 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Jiménez, J., Hoyas, S.: Turbulent fluctuations above the buffer layer of wall-bounded flows. J. Fluid Mech. 611, 215–236 (2008) zbMATHCrossRefGoogle Scholar
  11. 11.
    Jiménez, J., Hoyas, S., Simens, M.P., Mizuno, Y.: Turbulent boundary layers and channels at moderate Reynolds numbers. J. Fluid Mech. (2010). DOI  10.1017/S0022112010001370 Google Scholar
  12. 12.
    Jiménez, J., Kawahara, G., Simens, M.P., Nagata, M., Shiba, M.: Characterization of near-wall turbulence in terms of equilibrium and ‘bursting’ solutions. Phys. Fluids 17, 015105 (2005) CrossRefGoogle Scholar
  13. 13.
    Jiménez, J., Uhlman, M., Pinelli, A., Kawahara, G.: Turbulent shear flow over active and passive porous surfaces. J. Fluid Mech. 442, 89–117 (2001) zbMATHCrossRefGoogle Scholar
  14. 14.
    Kim, J., Moin, P., Moser, R.D.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987) zbMATHCrossRefGoogle Scholar
  15. 15.
    Lee, S.J., Lee, S.H.: Flow field analysis of a turbulent boundary layer over a riblet surface. Experiments in Fluids 30, 153–166 (2001) CrossRefGoogle Scholar
  16. 16.
    Raupach, M.R., Finnigan, J., Brunet, Y.: Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorology 78, 351–382 (1996) CrossRefGoogle Scholar
  17. 17.
    Robinson, S.K.: Coherent motions in the turbulent boundary layer. Ann. Rev. Fluid Mech. 23, 601–639 (1991) CrossRefGoogle Scholar
  18. 18.
    Schlatter, P., Örlü, R., Li, Q., Fransson, J., Johansson, A., Alfredsson, P.H., Henningson, D.S.: Turbulent boundary layers up to Re θ=2500 through simulation and experiments. Phys. Fluids 21, 051702 (2009) CrossRefGoogle Scholar
  19. 19.
    Simens, M., Jiménez, J., Hoyas, S., Mizuno, Y.: A high-resolution code for turbulent boundary layers. J. Comput. Phys. 228, 4218–4231 (2009) zbMATHCrossRefGoogle Scholar
  20. 20.
    Suzuki, Y., Kasagi, N.: Turbulent drag reduction mechanism above a riblet surface. AIAA J. 32(9), 1781–1790 (1994) CrossRefGoogle Scholar
  21. 21.
    Wu, X., Moin, P.: A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. J. Fluid Mech. 608, 81–112 (2008) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.School of AeronauticsUniversidad PolitécnicaMadridSpain

Personalised recommendations