Skip to main content

Effects of Lactoferrin on Skin Wound Healing

  • Chapter
  • First Online:
  • 846 Accesses

Abstract

The skin wound healing is a complex biological process that requires the regulation of different cell types. Lactoferrin is a metal-binding glycoprotein secreted from glandular epithelial cells and neutrophils. The topical administration of lactoferrin enhances the rate of skin wound closure in normal and diabetic mice. The promoting effect of lactoferrin on skin wound healing is partially dues to its immuno-modulating properties. Lactoferrin promotes the initial stage of inflammatory phase by increasing the production of pro-inflammatory cytokines and infiltration of immune cells into wounded area. On the other hand, lactoferrin is likely to serve as anti-inflammatory agent that neutralizes overabundant immune response. Moreover, lactoferrin is thought to promote both the granulation tissue formation and reepithelialization by enhancing the proliferation and migration of fibroblasts and keratinocytes. The synthesis of extracellular matrix components is also enhanced by lactoferrin. In an in vitro model of wound contraction, lactoferrin stimulates fibroblast-mediated collagen gel contraction. Lactoferrin is known as its anti-bacterial, anti-viral activities which may contribute to the healing of diabetic ulcers. These lines of observations indicate that lactoferrin can support the multiple biological processes involved in wound healing. Based on these findings, lactoferrin could be used in patients with diabetic and other types of ulcers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Martin P (1997) Wound healing–aiming for perfect skin regeneration. Science 276(5309):75–81

    Article  PubMed  CAS  Google Scholar 

  2. Eming SA, Krieg T, Davidson JM (2007) Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol 127(3):514–525

    Article  PubMed  CAS  Google Scholar 

  3. Shaw TJ, Martin P (2009) Wound repair at a glance. J Cell Sci 122(Pt 18):3209–3213

    Article  PubMed  CAS  Google Scholar 

  4. Theilgaard-Monch K, Knudsen S, Follin P, Borregaard N (2004) The transcriptional activation program of human neutrophils in skin lesions supports their important role in wound healing. J Immunol 172(12):7684–7693

    PubMed  Google Scholar 

  5. Conneely OM (2001) Antiinflammatory activities of lactoferrin. J Am Coll Nutr 20(5 Suppl):389S–395S, discussion 396S–397S

    PubMed  CAS  Google Scholar 

  6. Legrand D, Elass E, Carpentier M, Mazurier J (2005) Lactoferrin: a modulator of immune and inflammatory responses. Cell Mol Life Sci 62(22):2549–2559

    Article  PubMed  CAS  Google Scholar 

  7. Actor JK, Hwang SA, Kruzel ML (2009) Lactoferrin as a natural immune modulator. Curr Pharm Des 15(17):1956–1973

    Article  PubMed  CAS  Google Scholar 

  8. Ward PP, Uribe-Luna S, Conneely OM (2002) Lactoferrin and host defense. Biochem Cell Biol 80(1):95–102

    Article  PubMed  CAS  Google Scholar 

  9. Dovi JV, Szpaderska AM, DiPietro LA (2004) Neutrophil function in the healing wound: adding insult to injury? Thromb Haemost 92(2):275–280

    PubMed  CAS  Google Scholar 

  10. Loots MA, Lamme EN, Zeegelaar J, Mekkes JR et al (1998) Differences in cellular infiltrate and extracellular matrix of chronic diabetic and venous ulcers versus acute wounds. J Invest Dermatol 111(5):850–857

    Article  PubMed  CAS  Google Scholar 

  11. Sivamani RK, Lam ST, Isseroff RR (2007) Beta adrenergic receptors in keratinocytes. Dermatol Clin 25(4):643–653, x

    Article  PubMed  CAS  Google Scholar 

  12. Nakajima M, Shinoda I, Samejima Y, Miyauchi H et al (1997) Lactoferrin as a suppressor of cell migration of gastrointestinal cell lines. J Cell Physiol 170(2):101–105

    Article  PubMed  CAS  Google Scholar 

  13. Pattamatta U, Willcox M, Stapleton F, Cole N et al (2009) Bovine lactoferrin stimulates human corneal epithelial alkali wound healing in vitro. Invest Ophthalmol Vis Sci 50(4):1636–1643

    Article  PubMed  Google Scholar 

  14. Takayama Y, Mizumachi K (2001) Effects of lactoferrin on collagen gel contractile activity and myosin light chain phosphorylation in human fibroblasts. FEBS Lett 508(1):111–116

    Article  PubMed  CAS  Google Scholar 

  15. Engelmayer J, Blezinger P, Varadhachary A (2008) Talactoferrin stimulates wound healing with modulation of inflammation. J Surg Res 149(2):278–286

    Article  PubMed  CAS  Google Scholar 

  16. Tang L, Cui T, Wu JJ, Liu-Mares W et al (2010) A rice-derived recombinant human lactoferrin stimulates fibroblast proliferation, migration, and sustains cell survival. Wound Repair Regen 18(1):123–131

    Article  PubMed  Google Scholar 

  17. Tang L, Wu JJ, Ma Q, Cui T et al (2010) Human lactoferrin stimulates skin keratinocyte function and wound re-epithelialization. Br J Dermatol 163(1):38–47

    PubMed  CAS  Google Scholar 

  18. Morasso MI, Tomic-Canic M (2005) Epidermal stem cells: the cradle of epidermal determination, differentiation and wound healing. Biol Cell 97(3):173–183

    Article  PubMed  CAS  Google Scholar 

  19. Grinnell F (1994) Fibroblasts, myofibroblasts, and wound contraction. J Cell Biol 124(4):401–404

    Article  PubMed  CAS  Google Scholar 

  20. Grinnell F, Ho CH, Lin YC, Skuta G (1999) Differences in the regulation of fibroblast contraction of floating versus stressed collagen matrices. J Biol Chem 274(2):918–923

    Article  PubMed  CAS  Google Scholar 

  21. Takayama Y, Mizumachi K, Takezawa T (2002) The bovine lactoferrin region responsible for promoting the collagen gel contractile activity of human fibroblasts. Biochem Biophys Res Commun 299(5):813–817

    Article  PubMed  CAS  Google Scholar 

  22. Pellegrin S, Mellor H (2007) Actin stress fibres. J Cell Sci 120(Pt 20):3491–3499

    Article  PubMed  CAS  Google Scholar 

  23. Totsukawa G, Yamakita Y, Yamashiro S, Hartshorne DJ et al (2000) Distinct roles of ROCK (Rho-kinase) and MLCK in spatial regulation of MLC phosphorylation for assembly of stress fibers and focal adhesions in 3 T3 fibroblasts. J Cell Biol 150(4):797–806

    Article  PubMed  CAS  Google Scholar 

  24. Totsukawa G, Wu Y, Sasaki Y, Hartshorne DJ et al (2004) Distinct roles of MLCK and ROCK in the regulation of membrane protrusions and focal adhesion dynamics during cell migration of fibroblasts. J Cell Biol 164(3):427–439

    Article  PubMed  CAS  Google Scholar 

  25. Webb DJ, Donais K, Whitmore LA, Thomas SM et al (2004) FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol 6(2):154–161

    Article  PubMed  CAS  Google Scholar 

  26. Huang C, Jacobson K, Schaller MD (2004) MAP kinases and cell migration. J Cell Sci 117(Pt 20):4619–4628

    Article  PubMed  CAS  Google Scholar 

  27. Klemke RL, Cai S, Giannini AL, Gallagher PJ et al (1997) Regulation of cell motility by mitogen-activated protein kinase. J Cell Biol 137(2):481–492

    Article  PubMed  CAS  Google Scholar 

  28. Nguyen DH, Catling AD, Webb DJ, Sankovic M et al (1999) Myosin light chain kinase functions downstream of Ras/ERK to promote migration of urokinase-type plasminogen activator-stimulated cells in an integrin-selective manner. J Cell Biol 146(1):149–164

    Article  PubMed  CAS  Google Scholar 

  29. Takayama Y, Takahashi H, Mizumachi K, Takezawa T (2003) Low density lipoprotein receptor-related protein (LRP) is required for lactoferrin-enhanced collagen gel contractile activity of human fibroblasts. J Biol Chem 278(24):22112–22118

    Article  PubMed  CAS  Google Scholar 

  30. Somlyo AP, Somlyo AV (2000) Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. J Physiol 522(Pt 2):177–185

    Article  PubMed  CAS  Google Scholar 

  31. Parizi M, Howard EW, Tomasek JJ (2000) Regulation of LPA-promoted myofibroblast contraction: role of Rho, myosin light chain kinase, and myosin light chain phosphatase. Exp Cell Res 254(2):210–220

    Article  PubMed  CAS  Google Scholar 

  32. Amano M, Mukai H, Ono Y, Chihara K et al (1996) Identification of a putative target for Rho as the serine-threonine kinase protein kinase N. Science 271(5249):648–650

    Article  PubMed  CAS  Google Scholar 

  33. Vash B, Phung N, Zein S, DeCamp D (1998) Three complement-type repeats of the low-density lipoprotein receptor-related protein define a common binding site for RAP, PAI-1, and lactoferrin. Blood 92(9):3277–3285

    PubMed  CAS  Google Scholar 

  34. Neels JG, van Den Berg BM, Lookene A, Olivecrona G et al (1999) The second and fourth cluster of class A cysteine-rich repeats of the low density lipoprotein receptor-related protein share ligand-binding properties. J Biol Chem 274(44):31305–31311

    Article  PubMed  CAS  Google Scholar 

  35. May P, Herz J, Bock HH (2005) Molecular mechanisms of lipoprotein receptor signalling. Cell Mol Life Sci 62(19–20):2325–2338

    Article  PubMed  CAS  Google Scholar 

  36. May P, Woldt E, Matz RL, Boucher P (2007) The LDL receptor-related protein (LRP) family: an old family of proteins with new physiological functions. Ann Med 39(3):219–228

    Article  PubMed  CAS  Google Scholar 

  37. Lillis AP, Mikhailenko I, Strickland DK (2005) Beyond endocytosis: LRP function in cell migration, proliferation and vascular permeability. J Thromb Haemost 3(8):1884–1893

    Article  PubMed  CAS  Google Scholar 

  38. Okada SS, Grobmyer SR, Barnathan ES (1996) Contrasting effects of plasminogen activators, urokinase receptor, and LDL receptor-related protein on smooth muscle cell migration and invasion. Arterioscler Thromb Vasc Biol 16(10):1269–1276

    Article  PubMed  CAS  Google Scholar 

  39. Cheng CF, Fan J, Fedesco M, Guan S et al (2008) Transforming growth factor alpha (TGFalpha)-stimulated secretion of HSP90alpha: using the receptor LRP-1/CD91 to promote human skin cell migration against a TGFbeta-rich environment during wound healing. Mol Cell Biol 28(10):3344–3358

    Article  PubMed  CAS  Google Scholar 

  40. Nassar T, Haj-Yehia A, Akkawi S, Kuo A et al (2002) Binding of urokinase to low density lipoprotein-related receptor (LRP) regulates vascular smooth muscle cell contraction. J Biol Chem 277(43):40499–40504

    Article  PubMed  CAS  Google Scholar 

  41. Sumi Y, Muramatsu H, Hata K, Ueda M et al (2000) Midkine enhances early stages of collagen gel contraction. J Biochem 127(2):247–251

    PubMed  CAS  Google Scholar 

  42. Muramatsu H, Zou K, Sakaguchi N, Ikematsu S et al (2000) LDL receptor-related protein as a component of the midkine receptor. Biochem Biophys Res Commun 270(3):936–941

    Article  PubMed  CAS  Google Scholar 

  43. Willnow TE, Goldstein JL, Orth K, Brown MS et al (1992) Low density lipoprotein receptor-related protein and gp330 bind similar ligands, including plasminogen activator-inhibitor complexes and lactoferrin, an inhibitor of chylomicron remnant clearance. J Biol Chem 267(36):26172–26180

    PubMed  CAS  Google Scholar 

  44. Ji ZS, Mahley RW (1994) Lactoferrin binding to heparan sulfate proteoglycans and the LDL receptor-related protein. Further evidence supporting the importance of direct binding of remnant lipoproteins to HSPG. Arterioscler Thromb 14(12):2025–2031

    Article  PubMed  CAS  Google Scholar 

  45. Meilinger M, Haumer M, Szakmary KA, Steinbock F et al (1995) Removal of lactoferrin from plasma is mediated by binding to low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor and transport to endosomes. FEBS Lett 360(1):70–74

    Article  PubMed  CAS  Google Scholar 

  46. Fillebeen C, Descamps L, Dehouck MP, Fenart L et al (1999) Receptor-mediated transcytosis of lactoferrin through the blood-brain barrier. J Biol Chem 274(11):7011–7017

    Article  PubMed  CAS  Google Scholar 

  47. Goretzki L, Mueller BM (1998) Low-density-lipoprotein-receptor-related protein (LRP) interacts with a GTP-binding protein. Biochem J 336(Pt 2):381–386

    PubMed  CAS  Google Scholar 

  48. Bu G, Marzolo MP (2000) Role of rap in the biogenesis of lipoprotein receptors. Trends Cardiovasc Med 10(4):148–155

    Article  PubMed  CAS  Google Scholar 

  49. Birkenmeier G, Heidrich K, Glaser C, Handschug K et al (1998) Different expression of the alpha2-macroglobulin receptor/low-density lipoprotein receptor-related protein in human keratinocytes and fibroblasts. Arch Dermatol Res 290(10):561–568

    Article  PubMed  CAS  Google Scholar 

  50. Grey A, Banovic T, Zhu Q, Watson M et al (2004) The low-density lipoprotein receptor-related protein 1 is a mitogenic receptor for lactoferrin in osteoblastic cells. Mol Endocrinol 18(9):2268–2278

    Article  PubMed  CAS  Google Scholar 

  51. Dhennin-Duthille I, Masson M, Damiens E, Fillebeen C et al (2000) Lactoferrin upregulates the expression of CD4 antigen through the stimulation of the mitogen-activated protein kinase in the human lymphoblastic T Jurkat cell line. J Cell Biochem 79(4):583–593

    Article  PubMed  CAS  Google Scholar 

  52. Gotthardt M, Trommsdorff M, Nevitt MF, Shelton J et al (2000) Interactions of the low density lipoprotein receptor gene family with cytosolic adaptor and scaffold proteins suggest diverse biological functions in cellular communication and signal transduction. J Biol Chem 275(33):25616–25624

    Article  PubMed  CAS  Google Scholar 

  53. Loukinova E, Ranganathan S, Kuznetsov S, Gorlatova N et al (2002) Platelet-derived growth factor (PDGF)-induced tyrosine phosphorylation of the low density lipoprotein receptor-related protein (LRP). Evidence for integrated co-receptor function betwenn LRP and the PDGF. J Biol Chem 277(18):15499–15506

    Article  PubMed  CAS  Google Scholar 

  54. Barnes H, Ackermann EJ, van der Geer P (2003) v-Src induces Shc binding to tyrosine 63 in the cytoplasmic domain of the LDL receptor-related protein 1. Oncogene 22(23):3589–3597

    Article  PubMed  CAS  Google Scholar 

  55. Shinmoto H, Sato K, Dosako S (1992) Inhibition by bovine lactoferrin of adhesion of L929 cells cultured in serum-free git medium. Biosci Biotechnol Biochem 56(6):965–966

    Article  CAS  Google Scholar 

  56. Pollanen MT, Hakkinen L, Overman DO, Salonen JI (1998) Lactoferrin impedes epithelial cell adhesion in vitro. J Periodontal Res 33(1):8–16

    Article  PubMed  CAS  Google Scholar 

  57. Sakamoto K, Ito Y, Mori T, Sugimura K (2006) Interaction of human lactoferrin with cell adhesion molecules through RGD motif elucidated by lactoferrin-binding epitopes. J Biol Chem 281(34):24472–24478

    Article  PubMed  CAS  Google Scholar 

  58. Oh SM, Hahm DH, Kim IH, Choi SY (2001) Human neutrophil lactoferrin trans-activates the matrix metalloproteinase 1 gene through stress-activated MAPK signaling modules. J Biol Chem 276(45):42575–42579

    Article  PubMed  CAS  Google Scholar 

  59. Stern R (2003) Devising a pathway for hyaluronan catabolism: are we there yet? Glycobiology 13(12):105R–115R

    Article  PubMed  CAS  Google Scholar 

  60. Saito S, Takayama Y, Mizumachi K, Suzuki C (2011) Lactoferrin promotes hyaluronan synthesis in human dermal fibroblasts. Biotechnol Lett 33(1):33–39

    Article  PubMed  CAS  Google Scholar 

  61. Herrick SE, Ireland GW, Simon D, McCollum CN et al (1996) Venous ulcer fibroblasts compared with normal fibroblasts show differences in collagen but not fibronectin production under both normal and hypoxic conditions. J Invest Dermatol 106(1):187–193

    Article  PubMed  CAS  Google Scholar 

  62. Mast BA, Diegelmann RF, Krummel TM, Cohen IK (1993) Hyaluronic acid modulates proliferation, collagen and protein synthesis of cultured fetal fibroblasts. Matrix 13(6):441–446

    PubMed  CAS  Google Scholar 

  63. Lu L, Reinach PS, Kao WWY (2001) Corneal epithelial wound healing. Exp Biol Med 226(7):653–664

    CAS  Google Scholar 

  64. Yu FS, Yin J, Xu K, Huang J (2010) Growth factors and corneal epithelial wound healing. Brain Res Bull 81(2–3):229–235

    Article  PubMed  CAS  Google Scholar 

  65. Imanishi J, Kamiyama K, Iguchi I, Kita M et al (2000) Growth factors: importance in wound healing and maintenance of transparency of the cornea. Prog Retin Eye Res 19(1):113–129

    Article  PubMed  CAS  Google Scholar 

  66. Sotozono C, He JC, Matsumoto Y, Kita M et al (1997) Cytokine expression in the alkali-burned cornea. Curr Eye Res 16(7):670–676

    Article  PubMed  CAS  Google Scholar 

  67. Nishida T, Nakamura M, Mishima H, Otori T (1992) Interleukin 6 promotes epithelial migration by a fibronectin-dependent mechanism. J Cell Physiol 153(1):1–5

    Article  PubMed  CAS  Google Scholar 

  68. Ashby B, Garrett Q, Willcox M (2011) Bovine lactoferrin structures promoting corneal epithelial wound healing in vitro. Invest Ophthalmol Vis Sci 52(5):2719–2726

    Article  PubMed  CAS  Google Scholar 

  69. Ward PP, Piddington CS, Cunningham GA, Zhou X et al (1995) A system for production of commercial quantities of human lactoferrin: a broad spectrum natural antibiotic. Biotechnology (NY) 13(5):498–503

    Article  CAS  Google Scholar 

  70. Hayes TG, Falchook GF, Varadhachary GR, Smith DP et al (2006) Phase I trial of oral talactoferrin alfa in refractory solid tumors. Invest New Drugs 24(3):233–240

    Article  PubMed  CAS  Google Scholar 

  71. Spadaro M, Caorsi C, Ceruti P, Varadhachary A et al (2008) Lactoferrin, a major defense protein of innate immunity, is a novel maturation factor for human dendritic cells. FASEB J 22(8):2747–2757

    Article  PubMed  CAS  Google Scholar 

  72. Lin ZQ, Kondo T, Ishida Y, Takayasu T et al (2003) Essential involvement of IL-6 in the skin wound-healing process as evidenced by delayed wound healing in IL-6-deficient mice. J Leukoc Biol 73(6):713–721

    Article  PubMed  CAS  Google Scholar 

  73. Kinnaird A, Peters SW, Foster JR, Kimber I (1989) Dendritic cell accumulation in draining lymph nodes during the induction phase of contact allergy in mice. Int Arch Allergy Appl Immunol 89(2–3):202–210

    Article  PubMed  CAS  Google Scholar 

  74. Cumberbatch M, Kimber I (1992) Dermal tumour necrosis factor-alpha induces dendritic cell migration to draining lymph nodes, and possibly provides one stimulus for Langerhans’ cell migration. Immunology 75(2):257–263

    PubMed  CAS  Google Scholar 

  75. Cumberbatch M, Dearman RJ, Kimber I (1997) Langerhans cells require signals from both tumour necrosis factor alpha and interleukin 1 beta for migration. Adv Exp Med Biol 417:125–128

    PubMed  CAS  Google Scholar 

  76. Zweiman B, Kucich U, Shalit M, Von Allmen C et al (1990) Release of lactoferrin and elastase in human allergic skin reactions. J Immunol 144(10):3953–3960

    PubMed  CAS  Google Scholar 

  77. Cumberbatch M, Dearman RJ, Uribe-Luna S, Headon DR et al (2000) Regulation of epidermal Langerhans cell migration by lactoferrin. Immunology 100(1):21–28

    Article  PubMed  CAS  Google Scholar 

  78. Darby IA, Bisucci T, Hewitson TD, MacLellan DG (1997) Apoptosis is increased in a model of diabetes-impaired wound healing in genetically diabetic mice. Int J Biochem Cell Biol 29(1):191–200

    Article  PubMed  CAS  Google Scholar 

  79. Robson MC (1997) The role of growth factors in the healing of chronic wounds. Wound Repair Regen 5(1):12–17

    Article  PubMed  CAS  Google Scholar 

  80. Kim HM, Lowery JC, Hamill JB, Wilkins EG (2003) Accuracy of a web-based system for monitoring chronic wounds. Telemed J E Health 9(2):129–140

    Article  PubMed  Google Scholar 

  81. Soneja A, Drews M, Malinski T (2005) Role of nitric oxide, nitroxidative and oxidative stress in wound healing. Pharmacol Rep 57(Suppl):108–119

    PubMed  Google Scholar 

  82. LeFrock JL, Joseph WS (1995) Bone and soft-tissue infections of the lower extremity in diabetics. Clin Podiatr Med Surg 12(1):87–103

    PubMed  CAS  Google Scholar 

  83. Lyons TE, Miller MS, Serena T, Sheehan P et al (2007) Talactoferrin alfa, a recombinant human lactoferrin promotes healing of diabetic neuropathic ulcers: a phase 1/2 clinical study. Am J Surg 193(1):49–54

    Article  PubMed  CAS  Google Scholar 

  84. Ammons MC, Ward LS, James GA (2011) Anti-biofilm efficacy of a lactoferrin/xylitol wound hydrogel used in combination with silver wound dressings. Int Wound J 8(3):268–273

    Article  PubMed  Google Scholar 

  85. Eming SA, Koch M, Krieger A, Brachvogel B et al (2010) Differential proteomic analysis distinguishes tissue repair biomarker signatures in wound exudates obtained from normal healing and chronic wounds. J Proteome Res 9(9):4758–4766

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiharu Takayama .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Takayama, Y. (2012). Effects of Lactoferrin on Skin Wound Healing. In: Lactoferrin and its Role in Wound Healing. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2467-9_5

Download citation

Publish with us

Policies and ethics