Addressing the Vitalist’s Challenge to Mechanistic Science: Dynamic Mechanistic Explanation

Part of the History, Philosophy and Theory of the Life Sciences book series (HPTL, volume 2)


Vitalists, especially in the nineteenth century, correctly objected that mechanists’ explanations in biology lacked the resources to explain important features of biological phenomena. As some mechanists, especially Claude Bernard, recognized, the key to addressing these objections was to incorporate in mechanistic explanations the contribution of organization found in living systems. In particular, it is necessary to understand how non-sequential organization (combined with nonlinear operations) enables mechanisms to exhibit the sort of complex behavior, including endogenously generated behavior, exhibited by living organisms. Non-sequential organization poses a serious problem for human understanding, which characterizes the functioning of mechanisms qualitatively in a step-by-step manner. To understand the effects of non-sequential organization between nonlinear operations requires developing mathematical equations to represent the operations and computational simulations using these equations to determine how various components of the mechanism change depending on their own state and those of other components of the mechanism. Further, analyzing the results of these simulations requires appropriate representations such as the phase-space representations employed in dynamical systems theory. Fortunately, mechanistic science can be coupled with dynamical modeling to yield dynamic mechanistic explanations such as those being proposed in systems biology. These hold the promise of explaining the features of biological phenomena on which the vitalists appropriately focused attention.


Dynamics Mechanistic explanation Network motifs Non-sequential organization Vitalism 



 The paper was partly written while I was a fellow at the Institute for Advanced Studies of the Hebrew University of Jerusalem. I am most grateful for their support and the valuable exchanges with colleagues there.


  1. Abrahamsen, Adele, and Bechtel William. 2012. From reactive to endogenously active dynamical conceptions of the brain. In Philosophy of behavioral biology, eds. T. Reydon and K. Plaisance, 329–366. New York: Springer.Google Scholar
  2. Alon, Uri. 2007. Network motifs: Theory and experimental approaches. Nature Reviews Genetics 8: 450–461. doi:[ 10.1038/nrg2102].CrossRefGoogle Scholar
  3. Altmann, Richard. 1890. Die Elementaroganismen und ihre Beziehungen zu den Zellen. Leipzig: von Veit.Google Scholar
  4. Barabási, Albert-László, and Réka Albert. 1999. Emergence of scaling in random networks. Science 286: 509–512.CrossRefGoogle Scholar
  5. Barabási, Albert-László, and Eric Bonabeau. 2003. Scale-free networks. Scientific American 50–59.Google Scholar
  6. Bechtel, William. 2006. Discovering cell mechanisms: The creation of modern cell biology. Cambridge: Cambridge University Press.Google Scholar
  7. Bechtel, William. 2011. Representing time of day in circadian clocks. In Knowledge and representation, ed. A. Newen, A. Bartels, and E.-M. Jung, 129–162. Palo Alto: CSLI Publications.Google Scholar
  8. Bechtel, William, and Adele Abrahamsen. 2005. Explanation: A mechanist alternative. Studies in History and Philosophy of Biological and Biomedical Sciences 36: 421–441.CrossRefGoogle Scholar
  9. Bechtel, William, and Adele Abrahamsen. 2009. Decomposing, recomposing, and situating circadian mechanisms: Three tasks in developing mechanistic explanations. In Reduction and elimination in philosophy of mind and philosophy of neuroscience, ed. H. Leitgeb and A. Hieke, 173–186. Frankfurt: Ontos Verlag.Google Scholar
  10. Bechtel, William, and Adele Abrahamsen. 2010. Dynamic mechanistic explanation: Computational modeling of circadian rhythms as an exemplar for cognitive science. Studies in History and Philosophy of Science Part A 41: 321–333.CrossRefGoogle Scholar
  11. Bechtel, William, and Adele Abrahamsen. 2011. Complex biological mechanisms: Cyclic, oscillatory, and autonomous. In Philosophy of complex systems. Handbook of the philosophy of science, 10th ed, ed. C.A. Hooker, 257–285. New York: Elsevier.CrossRefGoogle Scholar
  12. Bechtel, William, and Robert C. Richardson. 1993/2010. Discovering complexity: Decomposition and localization as strategies in scientific research. Cambridge, MA: MIT Press. 1993 edition published by Princeton University Press.Google Scholar
  13. Berger, Hans. 1929. Über daas Elektroenkephalogramm des Menschen. Archiv für Psychiatrie und Nervenkrankheiten 87: 527–570.CrossRefGoogle Scholar
  14. Bernard, Claude. 1865. An introduction to the study of experimental medicine. New York: Dover.Google Scholar
  15. Bernard, Claude. 1878. Leçons sur les phénomènes de la vie communs aux animaux et aux végétaux. Paris: Baillière.Google Scholar
  16. Berthollet, Claude-Louis. 1780. Recherches sur la nature des substances animales et sur leurs rapports avec les substances végétales. Mémoires de l’Académie royale des sciences 1: 120–125.Google Scholar
  17. Bichat, Xavier. 1805. Recherches Physiologiques sur la Vie et la Mort, 3rd ed. Paris: Machant.CrossRefGoogle Scholar
  18. Brown, R. 1833. On the organs and mode of fecundation in Orchideae and Asclediadeae. Transactions of the Linnean Society 16: 685–745.CrossRefGoogle Scholar
  19. Büchner, E. 1897. Alkoholische Gärung ohne Hefezellen (Vorläufige Mittheilung). Berichte der deutschen chemischen Gesellschaft 30: 117–124.CrossRefGoogle Scholar
  20. Buzsáki, György. 2006. Rhythms of the brain. Oxford: Oxford University Press.CrossRefGoogle Scholar
  21. Cannon, Walter B. 1929. Organization of physiological homeostasis. Physiological Reviews 9: 399–431.Google Scholar
  22. Chemero, Anthony, and Michael Silberstein. 2008. After the philosophy of mind: Replacing scholasticism with science. Philosophy of Science 75: 1–27.CrossRefGoogle Scholar
  23. Craver, Carl F. 2002. Interlevel experiments and multilevel mechanisms in the neuroscience of memory. Philosophy of Science 69: S83–S97.CrossRefGoogle Scholar
  24. Craver, Carl F. 2007. Explaining the brain: What a science of the mind-brain could be. New York: Oxford University Press.Google Scholar
  25. Craver, Carl F., and William Bechtel. 2007. Top-down causation without top-down causes. Biology and Philosophy 22: 547–563.CrossRefGoogle Scholar
  26. Craver, Carl F., and Lindley Darden. 2001. Discovering mechanisms in neurobiology: The case of spatial memory. In Theory and method in neuroscience, ed. P.K. Machamer, R. Grush, and P. McLaughlin, 112–137. Pittsburgh: University of Pittsburgh Press.Google Scholar
  27. Darden, Lindley. 2006. Reasoning in biological discoveries: Essays on mechanisms, interfield relations, and anomaly resolution. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  28. Embden, Gustav, H.J. Deuticke, and G. Kraft. 1933. Über die intermediaren Vorgänge bei der Glykolyse in der Muskulatur. Klinische Wochenschrift 12: 213–215.CrossRefGoogle Scholar
  29. Farey, John. 1827. A treatise on the steam engine: Historical, practical, and descriptive. London: Longman, Rees, Orme, Brown, and Green.Google Scholar
  30. Fick, Adolf, and Johannes Wislicenus. 1866. On the origin of muscular power. Philosophical Magazine & Journal of Science London, 4th ser. 31: 485–503.Google Scholar
  31. Flemming, Walther. 1878. Zur Kenntnis der Zelle und ihrer Theilungserscheinungen. Schriften des naturwissenschaftlicher Verein für Schleswig-Holstein 3: 23–27.Google Scholar
  32. Fol, Hermann. 1873. Le premier développement de l’oeuf chez les Géronidés. Archives des sciences physiques et naturelles, 2nd series 48: 335–340.Google Scholar
  33. Fox, Michael D., and Marcus E. Raichle. 2007. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience 8: 700–711.CrossRefGoogle Scholar
  34. Frankland, Edward. 1866. On the source of muscular power. Royal Institution of Great Britain. Notices of the proceedings at the meetings of the members 4: 661–685.Google Scholar
  35. Glennan, Stuart. 1996. Mechanisms and the nature of causation. Erkenntnis 44: 50–71.CrossRefGoogle Scholar
  36. Glennan, Stuart. 2002. Rethinking mechanistic explanation. Philosophy of Science 69: S342–S353.CrossRefGoogle Scholar
  37. Goldbeter, Albert. 1995. A model for circadian oscillations in the Drosophila Period protein (PER). Proceedings of the Royal Society of London B: Biological Sciences 261: 319–324.CrossRefGoogle Scholar
  38. Golgi, Camillo. 1898. Intorno alla struttura delle cellule nervose. Bollettino della Società Medico-Chirurgica di Pavia 13: 3–16.Google Scholar
  39. Graham Brown, T. 1911. The intrinsic factors in the act of progression in the mammal. Proceedings of the Royal Society of London Series B, Containing Papers of a Biological Character 84: 308–319.CrossRefGoogle Scholar
  40. Graham Brown, T. 1914. On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. The Journal of Physiology 48: 18–46.Google Scholar
  41. Hall, T.S. 1969. Ideas of life and matter; studies in the history of general physiology, 600 B.C.-1900 A.D. Chicago: University of Chicago Press.Google Scholar
  42. Hardin, P.E., J.C. Hall, and M. Rosbash. 1990. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343: 536–540.CrossRefGoogle Scholar
  43. Harvey, William. 1628. Exercitatio anatomica de motu cordis et sanguinis in animalibus. Francofurti: Sumptibus Guilielmi Fitzeri.Google Scholar
  44. Hempel, Carl G. 1965. Aspects of scientific explanation. In Aspects of scientific explanation and other essays in the philosophy of science, ed. C.G. Hempel, 331–496. New York: Macmillan.Google Scholar
  45. Hempel, Carl G. 1966. Philosophy of natural science. Englewood Cliffs: Prentice-Hall.Google Scholar
  46. Hooke, Robert. 1665. Micrographia: Or some physiological descriptions of minute bodies made by magnifying glasses with observations and inquiries thereupon. London: John Martin and James Allestry.CrossRefGoogle Scholar
  47. Hooper, S.L. 2001. Central pattern generators. In eLS. Chichester: Wiley.Google Scholar
  48. Jamieson, J.D., and G.E. Palade. 1966. Role of the Golgi complex in the intracellular transport of secretory proteins. Proceedings of the National Academy of Sciences (USA) 55: 424–431.CrossRefGoogle Scholar
  49. Kalir, Shiraz, Shmoolik Mangan, and U. Alon. 2005. A coherent feed-forward loop with a SUM input function prolongs flagella expression in Escherichia coli. Molecular Systems Biology 1. doi:[ 10.1038/msb4100010].
  50. Kaplan, D.M., and William Bechtel. 2011. Dynamical models: An alternative or complement to mechanistic explanations? Topics in Cognitive Science 3: 438–444.CrossRefGoogle Scholar
  51. Kaplan, D.M., and Carl Craver. 2011. The explanatory force of dynamical and mathematical models in neuroscience: A mechanistic perspective. Philosophy of Science 78: 601–627.CrossRefGoogle Scholar
  52. Kauffman, Stuart. 1971. Articulation of parts explanations in biology and the rational search for them. In PSA 1970, ed. R.C. Bluck and R.S. Cohen, 257–272. Dordrecht: Reidel.CrossRefGoogle Scholar
  53. Kirschner, Marc, John Gerhart, and Tim Mitchison. 2000. Molecular “Vitalism”. Cell 100: 79–88.CrossRefGoogle Scholar
  54. Kosslyn, Stephen M. 1994. Image and brain: The resolution of the imagery debate. Cambridge, MA: MIT Press.Google Scholar
  55. Langley, P., H.A. Simon, G.L. Bradshaw, and J.M. Zytkow. 1987. Scientific discovery: Computational explorations of the creative process. Cambridge: MIT Press.Google Scholar
  56. Leeuwenhoek, Antoni V. 1719. Epistolae physiologicae super compluribus naturae arcanis. Delft: Beman.Google Scholar
  57. Leloup, Jean-Christophe, and Albert Goldbeter. 2008. Modeling the circadian clock: From molecular mechanism to physiological disorders. BioEssays 30: 590–600.CrossRefGoogle Scholar
  58. Levy, Arnon, and William Bechtel. forthcoming. Abstraction and the organization of mechanisms. 80.Google Scholar
  59. Liebig, Justus. 1831. Ueber einen neuen Apparat zur Analyse organischer Körper, und über die Zusammensetzung einiger organischer Substanzen. Annalen der Physik und Chemie 21: 1–43.Google Scholar
  60. Liebig, Justus. 1840. Organic chemistry in its applications to agriculture and physiology. London: Taylor and Walton.Google Scholar
  61. Liebig, Justus. 1842. Animal chemistry: Or organic chemistry in its application to physiology and pathology. Cambridge: John Owen.Google Scholar
  62. Machamer, Peter, Lindley Darden, and Carl F. Craver. 2000. Thinking about mechanisms. Philosophy of Science 67: 1–25.CrossRefGoogle Scholar
  63. Mangan, Shmoolik, Alon Zaslaver, and Uri Alon. 2003. The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks. Journal of Molecular Biology 334: 197–204.CrossRefGoogle Scholar
  64. Mangan, Shmoolik, Shalev Itzkovitz, Alon Zaslaver, and Uri Alon. 2006. The incoherent feed-forward loop accelerates the response-time of the gal system of Escherichia coli. Journal of Molecular Biology 356: 1073–1081.CrossRefGoogle Scholar
  65. Maturana, Humberto R., and Francisco J. Varela. 1980. Autopoiesis: The organization of the living. In Autopoiesis and cognition: The realization of the living, ed. H.R. Maturana and F.J. Varela, 59–138. Dordrecht: Reidel.CrossRefGoogle Scholar
  66. Maxwell, James C. 1868. On governors. Proceedings of the Royal Society of London 16: 270–283.CrossRefGoogle Scholar
  67. Mayr, Otto. 1970. The origins of feedback control. Cambridge, MA: MIT Press.Google Scholar
  68. Meyerhof, Otto, and Wilhelm Kiesslling. 1936. Über den Hauptweg der Milchsäurebildung in der Muskulatur. Biochemische Zeitschrift 263: 83–113.Google Scholar
  69. Meyerhof, Otto, and Karl Lohmann. 1934. Über die enzymatische Gleichgewichtsreaktion zwischen Hexosediphosphorsäure und Dioxyacetonphosphorsäure. Die Naturwissenschaften 22: 220.CrossRefGoogle Scholar
  70. Nagel, Ernest. 1961. The structure of science. New York: Harcourt, Brace.Google Scholar
  71. Neuberg, Carl, and Johannes Wolfgang Kerb. 1914. Über zukerfreie Hefegärungen. Biochemische Zeitschrift 58: 158–170.Google Scholar
  72. Palade, Georges E., and Albert Claude. 1949a. The nature of the Golgi apparatus. I. Parallelism between intercellular myelin figures and Golgi apparatus in somatic cells. Journal of Morphology 85: 35–69.CrossRefGoogle Scholar
  73. Palade, Georges E., and Albert Claude. 1949b. The nature of the Golgi apparatus. II. Identification of the Golgi apparatus with a complex of myelin figures. Journal of Morphology 85: 71–111.CrossRefGoogle Scholar
  74. Prout, William. 1827. On the ultimate composition of simple alimentary substances; with some preliminary remarks on the analysis of organised bodies in general. Philosophical Transactions of the Royal Society of London 117: 355–388.CrossRefGoogle Scholar
  75. Rosenblueth, Arturo, Norbert Wiener, and Julian Bigelow. 1943. Behavior, purpose, and teleology. Philosophy of Science 10: 18–24.CrossRefGoogle Scholar
  76. Ruiz-Mirazo, Kepa, and Alvaro Moreno. 2004. Basic autonomy as a fundamental step in the synthesis of life. Artificial Life 10: 235–259.CrossRefGoogle Scholar
  77. Ruiz-Mirazo, Kepa, Juli Peretó, and Alvaro Moreno. 2004. A universal definition of life: Autonomy and open-ended evolution. Origins of Life and Evolution of the Biosphere 34: 323–346.CrossRefGoogle Scholar
  78. Schleiden, Matthias Jacob. 1838. Beiträge zur phytogenesis. Archiv für Anatomie, Physiologie und wissenschaftliche Medecin 137–176.Google Scholar
  79. Schrödinger, Erwin. 1944. What is life? The physical aspect of the living cell. Cambridge: Cambridge University Press.Google Scholar
  80. Schwann, Theodor. 1836. Über das Wesen des Verdauungsprocesses. Archiv für Anatomie, Physiologie und wissenschaftliche Medecin 90–138.Google Scholar
  81. Schwann, Theodor. 1839. Mikroskopische Untersuchungen über die Übereinstimmung in der Struktur und dem Wachstrum der Theire und Planzen. Berlin: Sander.Google Scholar
  82. Shen-Orr, Shai S., Ron Milo, Shmoolik Mangan, and Uri Alon. 2002. Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genetics 31: 64–68. doi:[ 10.1038/ng881].CrossRefGoogle Scholar
  83. Simon, Herbert A. 1962. The architecture of complexity: Hierarchic systems. Proceedings of the American Philosophical Society 106: 467–482.Google Scholar
  84. Skipper, Robert A., and Roberta L. Millstein. 2005. Thinking about evolutionary mechanisms: Natural selection. Studies in History and Philosophy of Biological and Biomedical Sciences 36: 327–347.CrossRefGoogle Scholar
  85. Stepp, Nigel, Anthony Chemero, and Michael T. Turvey. 2011. Philosophy for the rest of cognitive science. Topics in Cognitive Science 3: 425–437.CrossRefGoogle Scholar
  86. Thagard, Paul. 1988. Computational philosophy of science. Cambridge, MA: MIT Press/Bradford Books.Google Scholar
  87. Thagard, Paul. 2003. Pathways to biomedical discovery. Philosophy of Science 70: 235–254.CrossRefGoogle Scholar
  88. Thagard, Paul. 2006. Hot thought: Mechanisms and applications of emotional cognition. Cambridge, MA: MIT Press.Google Scholar
  89. Varela, Francisco J. 1979. Principles of biological autonomy. New York: Elsevier.Google Scholar
  90. Virchow, Rudolf. 1855. Cellular pathology. In Disease, life, and man: Selected essays of Rudolf Virchow, ed. L. Rather, 71–101. Stanford: Stanford University Press.Google Scholar
  91. von Mohl, Hugo. 1835. Über die Vermehrung der Pflanzenzellen durch Teilung. Dissert., Tübingen.Google Scholar
  92. Watts, Duncan J., and Steven H. Strogatz. 1998. Collective dynamics of small worlds. Nature 393: 440–442.CrossRefGoogle Scholar
  93. Weber, Marcel. 2005. Philosophy of experimental biology. Cambridge: Cambridge University Press.Google Scholar
  94. Wiener, Norbert. 1948. Cybernetics: Or, control and communication in the animal and the machine. New York: Wiley.Google Scholar
  95. Wilson, Donald M. 1961. The central nervous control of flight in a locust. Journal of Experimental Biology 38: 471–490.Google Scholar
  96. Wimsatt, William C. 1976. Reductionism, levels of organization, and the mind-body problem. In Consciousness and the brain: A scientific and philosophical inquiry, ed. G. Globus, G. Maxwell, and I. Savodnik, 202–267. New York: Plenum Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Philosophy, Center for Chronobiology and Interdisciplinary Programs in Science Studies and Cognitive ScienceUniversity of California, San DiegoLa JollaUSA

Personalised recommendations