Skip to main content

Cyclodextrins for Remediation Technologies

  • Chapter
  • First Online:
Environmental Chemistry for a Sustainable World

Abstract

Human activity and the modern way of life are responsible for the increase of environmental pollution. Industrial processes generate many substances that pollute air, water and soils with negative impacts for ecosystems and humans. The development of innovative remediation technologies has thus emerged as a significant environmental priority. Supramolecular chemistry can provide promising remediation methods to solve pollution issues. In particular, cyclodextrins (CDs) are a family of cyclic oligosaccharides that are composed of α-1,4-linked glucopyranose subunits. Cyclodextrins have thus a low-polarity cavity in which organic pollutants of appropriate shape and size can form inclusion complexes. This unique property makes cyclodextrins suitable for application in environmental protection by pollutant trapping. Accordingly, the present review lists the advantages of using cyclodextrins in soil, groundwater, wastewater and atmosphere remediation. The inclusion mechanism have been used in soil, water and air, either as solubilizing agent when the cyclodextrin is diluted in aqueous solution, or as trapping agent when cyclodextrin is immobilized on various supports. Resulting processes are highly versatile, since the complexing ability of cyclodextrins includes a wide range of pollutants. Remediation using cyclodextrins is a green processe due to cyclodextrins innocuity. Moreover, since inclusion involves reversible equilibriums, a major trend in the cyclodextrin environmental application field is to develop methods that combine both supramolecular chemistry and irreversible processes such as advanced oxidation or biodegradation. Such processes could lead to a complete remediation of pollutants and to cyclodextrin recycling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abay I, Denizli A, Bişkin E, Salih B (2005) Removal and pre-concentration of phenolic species onto β-cyclodextrin modified poly(hydroxyethylmethacrylate-ethyleneglycoldimethacrylate) microbeads. Chemosphere 61(9):1263–1272. doi:10.1016/j.chemosphere.2005.03.079

    Article  CAS  Google Scholar 

  • Allabashi R, Arkas M, Hörmann G, Tsiourvas D (2007) Removal of some organic pollutants in water employing ceramic membranes impregnated with cross-linked silylated dendritic and cyclodextrin polymers. Water Res 41(2):476–486. doi:10.1016/j.watres.2006.10.011

    Article  CAS  Google Scholar 

  • Allan IJ, Semple KT, Hare R, Reid BJ (2007) Cyclodextrin enhanced biodegradation of polycyclic aromatic hydrocarbons and phenol in contaminated soil slurries. Environ Sci Technol 41(15):5498–5504. doi:10.1021/es0704939

    Article  CAS  Google Scholar 

  • Anandan S, Yoon M (2004) Photocatalytic degradation of Nile red using TiO2-β-cyclodextrin colloids. Catal Commun 5(2):271–275. doi:10.1016/j.catcom.2004.03.003

    Article  CAS  Google Scholar 

  • Aoki N, Nishikawa M, Hattori K (2003) Synthesis of chitosan derivatives bearing cyclodextrin and adsorption of p-nonylphenol and bisphenol A. Carbohydr Polym 52(3):219–223. doi:10.1016/S0144-8617(02)00308-9

    Article  CAS  Google Scholar 

  • Asouhidou DD, Triantafyllidis KS, Lazaridis NK, Matis KA (2009) Adsorption of Remazol Red 3BS from aqueous solutions using APTES- and cyclodextrin-modified HMS-type mesoporous silicas. Colloids Surf A 346(1–3):83–90. doi:10.1016/j.colsurfa.2009.05.029

    Article  CAS  Google Scholar 

  • Badr T, Hanna K, De Brauer C (2004) Enhanced solubilization and removal of naphthalene and phenanthrene by cyclodextrins from two contaminated soils. J Hazard Mater 112(3):215–223. doi:10.1016/j.jhazmat.2004.04.017

    Article  CAS  Google Scholar 

  • Baek K, Yang J-S, Yang J-W (2003) Immobilization behavior of methyl tert-butyl ether by cyclodextrins. J Hazard Mater 105(1–3):169–177. doi:10.1016/j.jhazmat.2003.08.006

    Article  CAS  Google Scholar 

  • Bansal PS, Francis CL, Hart NK, Henderson SA, Oakenfull D, Robertson AD, Simpson GW (1998) Regioselective alkylation of β-cyclodextrin. Aust J Chem 51(10):915–923. doi:10.1071/C98064

    Article  CAS  Google Scholar 

  • Bardi L, Mattei A, Steffan S, Marzona M (2000) Hydrocarbon degradation by a soil microbial population with β-cyclodextrin as surfactant to enhance bioavailability. Enzyme Microb Technol 27(9):709–713. doi:10.1016/S0141-0229(00)00275-1

    Article  CAS  Google Scholar 

  • Bardi L, Martini C, Opsi F, Bertolone E, Belviso S, Masoero G, Marzona M, Ajmone Marsan F (2007) Cyclodextrin-enhanced in situ bioremediation of polyaromatic hydrocarbons-contaminated soils and plant uptake. J Incl Phenom Macrocycl Chem 57(1–4):439–444. doi:10.1007/s10847-006-9231-x

    Article  CAS  Google Scholar 

  • Baruch-Teblum E, Mastai Y, Landfester K (2010) Miniemulsion polymerization of cyclodextrin nanospheres for water purification from organic pollutants. Eur Polym J 46(8):1671–1678. doi:10.1016/j.eurpolymj.2010.05.007

    Article  CAS  Google Scholar 

  • Belyakova LA, Shvets AN, De Namor AFD (2008a) The adsorption of mercury(II) on the surface of silica modified with β-cyclodextrin. Russ J Phys Chem A 82(8):1357–1362. doi:10.1134/S0036024408080190

    Article  CAS  Google Scholar 

  • Belyakova LA, Shvets OM, Lyashenko DY (2008b) Nanosized centers for mercury(II) ions adsorption on a surface of modified silica. Cent Eur J Chem 6(4):581–591. doi:10.2478/s11532-008-0068-6

    CAS  Google Scholar 

  • Bergeron RJ (1977) Cycloamyloses. J Chem Educ 54(4):204–207. doi:10.1021/ed054p204

    Article  CAS  Google Scholar 

  • Bibby A, Mercier L (2003) Adsorption and separation of water-soluble aromatic molecules by cyclodextrin-functionalized mesoporous silica. Green Chem 5(1):15–19. doi:10.1039/b209251b

    Article  CAS  Google Scholar 

  • Blach P, Fourmentin S, Landy D, Cazier F, Surpateanu G (2008) Cyclodextrins: a new efficient absorbent to treat waste gas streams. Chemosphere 70(3):374–380. doi:10.1016/j.chemosphere.2007.07.018

    Article  CAS  Google Scholar 

  • Blanford WJ, Barackrnan ML, Boving TB, Klingel EJ, Johnson GR, Brusseau ML (2001) Cyclodextrin-enhanced vertical flushing of a trichloroethene contaminated aquifer. Ground Water Monit Remediat 21(1):58–66. doi:10.1111/j.1745-6592.2001.tb00631.x

    Article  CAS  Google Scholar 

  • Blyshak LA, Dodson KY, Patonay G, Warner IM, May WE (1989) Determination of cyclodextrin formation constants using dynamic coupled-column liquid chromatography. Anal Chem 61(9):955–960. doi:10.1021/ac00184a008

    Article  CAS  Google Scholar 

  • Bonenfant D, Niquette P, Mimeault M, Hausler R (2010) Adsorption and recovery of nonylphenol ethoxylate on a crosslinked beta-cyclodextrin-carboxymethylcellulose polymer. Water Sci Technol 61(9):2293–2301. doi:10.2166/wst.2010.152

    Article  CAS  Google Scholar 

  • Boving TB, Brusseau ML (2000) Solubilization and removal of residual trichloroethene from porous media: comparison of several solubilization agents. J Contam Hydrol 42(1):51–67. doi:10.1016/S0169-7722(99)00077-7

    Article  CAS  Google Scholar 

  • Brown SE, Coates JH, Coghlan DR, Easton CJ, Vaneyk SJ, Janowski W, Lepore A, Lincoln SF, Luo Y, May BL, Schiesser DS, Wang P, Williams ML (1993) Synthesis and properties of 6A-amino-6A-deoxy-α and β-cyclodextrin. Aust J Chem 46:953–958. doi:10.1071/CH9930953

    Article  CAS  Google Scholar 

  • Brusseau ML, Wang X, Hu Q (1994) Enhanced transport of low-polarity organic compounds through soil by cyclodextrin. Environ Sci Technol 28(5):952–956. doi:10.1021/es00054a030

    Article  CAS  Google Scholar 

  • Brusseau ML, Wang X, Wang W-Z (1997) Simultaneous elution of heavy metals and organic compounds from soil by cyclodextrin. Environ Sci Technol 31(4):1087–1092. doi:10.1021/es960612c

    Article  CAS  Google Scholar 

  • Butterfield MT, Agbaria RA, Warner IM (1996) Extraction of volatile PAHs from air by use of solid cyclodextrin. Anal Chem 68(7):1187–1190. doi:10.1021/ac9510144

    Article  CAS  Google Scholar 

  • Cai BC, Gao S, Lu GF (2006) β-Cyclodextrin and its derivatives-enhanced solubility and biodegradation of 2-nitrobiphenyl. J Environ Sci (China) 18(6):1157–1160. doi:10.1016/S1001-0742(06)60055-7

    Article  CAS  Google Scholar 

  • Cassez A, Ponchel A, Bricout H, Fourmentin S, Landy D, Monflier E (2006) Eco-efficient catalytic hydrodechloration of carbon tetrachloride in aqueous cyclodextrin solutions. Catal Lett 108(3–4):209–214. doi:10.1007/s10562-006-0045-7

    Article  CAS  Google Scholar 

  • Chen C-Y, Chen C-C, Chung Y-C (2007) Removal of phthalate esters by α-cyclodextrin-linked chitosan bead. Bioresour Technol 98(13):2578–2583. doi:10.1016/j.biortech.2006.09.009

    Article  CAS  Google Scholar 

  • Connors KA (1995) Population characteristics of cyclodextrin complex stabilities in aqueous solution. J Pharm Sci 84(7):843–848. doi:10.1002/jps.2600840712

    Article  CAS  Google Scholar 

  • Connors KA (1996) Measurement of cyclodextrin complex stability constants. Compr Supramol Chem 3:205–242

    CAS  Google Scholar 

  • Connors KA (1997) The stability of cyclodextrin complexes in solution. Chem Rev 97(5):1325–1357. doi:10.1021/cr960371r

    Article  CAS  Google Scholar 

  • Crini G (2003) Studies on adsorption of dyes on beta-cyclodextrin polymer. Bioresour Technol 90(2):193–198. doi:10.1016/S0960-8524(03)00111-1

    Article  CAS  Google Scholar 

  • Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30(1):38–70. doi:10.1016/j.progpolymsci.2004.11.002

    Article  CAS  Google Scholar 

  • Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97(9):1061–1085. doi:10.1016/j.biortech.2005.05.001

    Article  CAS  Google Scholar 

  • Crini G (2008) Kinetic and equilibrium studies on the removal of cationic dyes from aqueous solution by adsorption onto a cyclodextrin polymer. Dyes Pigment 77(2):415–426. doi:10.1016/j.dyepig.2007.07.001

    Article  CAS  Google Scholar 

  • Crini G, Morcellet M (2002) Synthesis and applications of adsorbents containing cyclodextrins. J Sep Sci 25(13):789–813. doi:10.1002/1615-9314(20020901)25:13<789::AID-JSSC789>3.0.CO;2-J

    Article  CAS  Google Scholar 

  • Crini G, Peindy HN (2006) Adsorption of C.I. Basic Blue 9 on cyclodextrin-based material containing carboxylic groups. Dyes Pigment 70(3):204–211. doi:10.1016/j.dyepig.2005.05.004

    Article  CAS  Google Scholar 

  • Crini G, Peindy HN, Gimbert F, Robert C (2007) Removal of C.I. Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: kinetic and equilibrium studies. Sep Purif Technol 53(1):97–110. doi:10.1016/j.seppur.2006.06.018

    Article  CAS  Google Scholar 

  • Dabrowski A (2001) Adsorption – from theory to practice. Adv Colloid Interface Sci 93(1–3):135–224. doi:10.1016/S0001-8686(00)00082-8

    Article  CAS  Google Scholar 

  • Debouzy J-C, Dabouis V, Fauvelle F, Steinbrükner S, Gentilhomme E (2000) Substituted cyclodextrins as chelating reagents for yperite, ethers and thioethers. Ann Pharm Fr 58(1):20–23. doi: APF-01-2000-58-1-0003-4509-101019-ART4

    CAS  Google Scholar 

  • Defaye J, Crouzy S, Evrard N, Law H (1998) Patent FR 2779 148-A1

    Google Scholar 

  • Ducoroy L, Bacquet M, Martel B, Morcellet M (2008) Removal of heavy metals from aqueous media by cation exchange nonwoven PET coated with β-cyclodextrin-polycarboxylic moieties. React Funct Polym 68(2):594–600. doi: 10.1016/j.reactfunctpolym.2007.10.033

    Article  CAS  Google Scholar 

  • Easton CJ, Lincoln SF (2000) Modified cyclodextrins, scaffolds and templates for supramolecular chemistry. Imperial College Press, London

    Google Scholar 

  • Fan Y, Feng Y-Q, Da S-L (2003a) On-line selective solid-phase extraction of 4-nitrophenol with β-cyclodextrin bonded silica. Anal Chim Acta 484(2):145–153. doi: 10.1016/S0003-2670(03)00342-8

    Article  CAS  Google Scholar 

  • Fan Y, Feng Y-Q, Da S-L, Feng P-Y (2003b) Evaluation of β-cyclodextrin bonded silica as a selective sorbent for the solid-phase extraction of 4-nitrophenol and 2,4-dinitrophenol. Anal Sci 19(5):709–714. doi: 10.2116/analsci.19.709

    Article  CAS  Google Scholar 

  • Fava F, Di Gioia D, Marchetti L, Fenyvesi E, Szejtli J (2002) Randomly methylated β-cyclodextrin (RAMEB) enhance the aerobic biodegradation of polychlorinated biphenyl in aged-contaminated soils. J Incl Phenom Macrocycl Chem 44(1–4):417–421. doi: 10.1023/A:1023019903194

    Article  CAS  Google Scholar 

  • Femia RA, Scypinski S, Love LJC (1985) Fluorescence characteristics of polychlorinated biphenyl isomers in cyclodextrin media. Environ Sci Technol 19(2):155–159. doi:10.1021/es00132a008

    Article  CAS  Google Scholar 

  • Feng J, Miedaner A, Ahrenkiel P, Himmel ME, Curtis C, Ginley D (2005) Self-assembly of photoactive TiO2-cyclodextrin wires. J Am Chem Soc 127(43):14968–14969. doi:10.1021/ja054448h

    Article  CAS  Google Scholar 

  • Fenyvesi E, Szente L, Russell NR, McNamara M (1996a) Specific guest types. Compr Supramol Chem 3:305–366

    CAS  Google Scholar 

  • Fenyvesi E, Szemán J, Szejtli J (1996b) Extraction of PAHs and pesticides from contaminated soils with aqueous CD solutions. J Incl Phenom Macrocycl Chem 25(1–3):229–232. doi:10.1007/BF01041575

    Article  CAS  Google Scholar 

  • Fenyvesi E, Gruiz K, Verstichel S, De Wilde B, Leitgib L, Csabai K, Szaniszlo N (2005) Biodegradation of cyclodextrins in soil. Chemosphere 60(8):1001–1008. doi:10.1016/j.chemosphere.2005.01.026

    Article  CAS  Google Scholar 

  • Fourmentin S, Outirite M, Blach P, Landy D, Ponchel A, Monflier E, Surpateanu G (2007) Solubilisation of chlorinated solvents by cyclodextrin derivatives. A study by static headspace gas chromatography and molecular modelling. J Hazard Mater 141(1):92–97. doi:10.1016/j.jhazmat.2006.06.090

    Article  CAS  Google Scholar 

  • French D (1957) The Schardinger Dextrins. Adv Carbohydr Chem 12:189–260. doi:10.1016/S0096-5332(08)60209-X

    CAS  Google Scholar 

  • French D, Pulley AO, Effenberger JA, Rougvie MA, Abdullah M (1965) Studies on the Schardinger dextrins *1: XII. The molecular size and structure of the δ-, ε-, ζ-, and η-dextrins. Arch Biochem Biophys 111(1):153–160. doi:10.1016/0003-9861(65)90334-6

    Article  CAS  Google Scholar 

  • Fujiki M, Deguchi T, Sanemasa I (1988) Association of naphthalene and its methyl derivatives with cyclodextrins in aqueous medium. Bull Chem Soc Jpn 61(4):1163–1167. doi:10.1246/bcsj.61.1163

    Article  CAS  Google Scholar 

  • Fukushima M, Tatsumi K (2007) Degradation of pentachlorophenol in contaminated soil suspensions by potassium monopersulfate catalyzed oxidation by a supramolecular complex between tetra(p-sulfophenyl)porphineiron(III) and hydroxypropyl-β-cyclodextrin. J Hazard Mater 144(1–2):222–228. doi:10.1016/j.jhazmat.2006.10.013

    Article  CAS  Google Scholar 

  • Furuta T, Ikefuji S, Tokunaga K, Neoh TL, Yoshii H (2007) Enhanced effect of RM-β-cyclodextrin on biodegradation of toluene in wastewater by activated sludge. J Incl Phenom Macrocycl Chem 57(1–4):21–27. doi:10.1007/s10847-006-9168-0

    Article  CAS  Google Scholar 

  • Gadelle A, Defaye J (1991) Selective halogenation at primary positions of cyclomaltooligosaccharides and a synthesis of per-3,6-anhydro cyclomaltooligosaccharides. Angew Chem Int Ed 30(1):78–80. doi:10.1002/anie.199100781

    Article  Google Scholar 

  • Gao H, Blanford WJ, Birdwell JE (2009) The pseudophase approach to assessing chemical partitioning in air – water – cyclodextrin systems. Environ Sci Technol 43(8):2943–2949. doi:10.1021/es803382z

    Article  CAS  Google Scholar 

  • Gemeay AH, Mansour IA, El-Sharkawy RG, Zaki AB (2004) Kinetics of the oxidative degradation of thionine dye by hydrogen peroxide catalyzed by supported transition metal ions complexes. J Chem Technol Biotechnol 79(1):85–96. doi:10.1002/jctb.917

    Article  CAS  Google Scholar 

  • Gillet B, Nicole DJ, Delpuech JJ (1982) The hydroxyl group protonation rates of α, β and γ-cyclodextrins in dimethyl sulphoxide. Tetrahedron Lett 23(1):65–68. doi:10.1016/S0040-4039(00)97533-6

    Article  CAS  Google Scholar 

  • Ginés JM, Pérez-Martinez JI, Arias MJ, Moyano JR, Morillo E, Ruiz-Conde A, Sánchez-Soto PJ (1996) Inclusion of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) with β-cyclodextrin by different processing methods. Chemosphere 33(2):321–334. doi:10.1016/0045-6535(96)00175-0

    Article  Google Scholar 

  • Gorin BI, Riopelle RJ, Thatcher GRJ (1996) Efficient perfacial derivatization of cyclodextrins at the primary face. Tetrahedron Lett 37(27):4647–4650. doi:10.1016/0040-4039(96)00916-1

    Article  CAS  Google Scholar 

  • Hamai S, Satoh N (1997) Inclusion effects of cyclomaltohexa- and heptaose (α- and β-cyclodextrins) on the acidities of several phenol derivatives. Carbohydr Res 304(3–4):229–237. doi:10.1016/S0008-6215(97)00279-6

    Article  CAS  Google Scholar 

  • Hanna K, De Brauer C, Germain P (2003) Solubilization of the neutral and charged forms of 2,4,6-trichlorophenol by β-cyclodextrin, methyl-β-cyclodextrin and hydroxypropyl-β-cyclodextrin in water. J Hazard Mater 100(1–3):109–116. doi:10.1016/S0304-3894(03)00068-2

    Article  CAS  Google Scholar 

  • Hanna K, De Brauer C, Germain P, Chovelon JM, Ferronato C (2004) Degradation of pentachlorophenol in cyclodextrin extraction effluent using a photocatalytic process. Sci Total Environ 332(1–3):51–60. doi:10.1016/j.scitotenv.2004.04.022

    Article  CAS  Google Scholar 

  • Hanna K, Chiron S, Oturan MA (2005) Coupling enhanced water solubilization with cyclodextrin to indirect electrochemical treatment for pentachlorophenol contaminated soil remediation. Water Res 39(12):2763–2773. doi:10.1016/j.watres.2005.04.057

    Article  CAS  Google Scholar 

  • Hawari J, Paquet L, Zhou E, Halasz A, Zilber B (1996) Enhanced recovery of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) from soil: cyclodextrin versus anionic surfactants. Chemosphere 32(10):1929–1936. doi:10.1016/0045-6535(96)00102-6

    Article  CAS  Google Scholar 

  • Huang Y, Ma W, Li J, Cheng M, Zhao J, Wan L, Yu JC (2003) A novel β-CD-hemin complex photocatalyst for efficient degradation of organic pollutants at neutral pHs under visible irradiation. J Phys Chem B 107(35):9409–9414. doi:10.1021/jp034854s

    Article  CAS  Google Scholar 

  • Ishiwata S, Kamiya M (1999) Effects of humic acids on the inclusion complexation of cyclodextrins with organophosphorus pesticides. Chemosphere 38(10):2219–2226. doi:10.1016/S0045-6535(98)00440-8

    Article  CAS  Google Scholar 

  • Jicsinszky L, Hashimoto H, Fenyvesy E, Ueno A (1996) Cyclodextrin derivatives. Compr Supramol Chem 3:57–188

    CAS  Google Scholar 

  • Kamiya M, Nakamura K, Sasaki C (1994) Inclusion effects of cyclodextrins on photodegradation rates of parathion and paraoxon in aquatic medium. Chemosphere 28(11):1961–1966. doi:10.1016/0045-6535(94)90146-5

    Article  CAS  Google Scholar 

  • Kammona O, Dini E, Kiparissides C, Allabashi R (2008) Synthesis of polymeric microparticles for water purification. Microporous Mesoporous Mater 110(1):141–149. doi:10.1016/j.micromeso.2007.10.011

    Article  CAS  Google Scholar 

  • Kenichi Y, Atsushi M, Yukio T, Mitsukatsu S, Yoshiaki Y, Tomoyuki I (1996) Patent JP 8333406

    Google Scholar 

  • Khan FI, Kr Ghoshal A (2000) Removal of volatile organic compounds from polluted air. J Loss Prev Process Ind 13(6):527–545. doi:10.1016/S0950-4230(00)00007-3

    Article  Google Scholar 

  • Khan AR, Forgo P, Stine KJ, D’Souza VT (1998) Methods for selective modifications of cyclodextrins. Chem Rev 98(5):1977–1996. doi:10.1021/cr970012b

    Article  CAS  Google Scholar 

  • Khodadoust AP, Narla O, Chandrasekaran S (2008) Cyclodextrin-enhanced extraction and removal of 2,4-dinitrotoluene from contaminated soils. Environ Eng Sci 25(4):615–626. doi:10.1089/ees.2005.0010

    Article  CAS  Google Scholar 

  • Landy D, Fourmentin S, Salome M, Surpateanu G (2000) Analytical improvement in measuring formation constants of inclusion complexes between β-cyclodextrin and phenolic compounds. J Incl Phenom Macrocycl Chem 38(1–4):187–198. doi:10.1023/A:1008156110999

    Article  CAS  Google Scholar 

  • Lantz AW, Wetterer SM, Armstrong DW (2005) Use of the three-phase model and headspace analysis for the facile determination of all partition/association constants for highly volatile solute-cyclodextrin-water systems. Anal Bioanal Chem 383(2):160–166. doi:10.1007/s00216-005-0030-9

    Article  CAS  Google Scholar 

  • Leyva E, Moctezuma E, Strouse J, García-Garibay MA (2001) Spectrometric and 2D NMR studies on the complexation of chlorophenols with cyclodextrins. J Incl Phenom Macrocycl Chem 39(1–2):41–46. doi:10.1023/A:1008150908997

    Article  CAS  Google Scholar 

  • Li DQ, Ma M (1999) Nanoporous polymers: new nanosponge absorbent media. Filtr Sep 36(10):26–28. doi:10.1016/S0015-1882(00)80050-6

    Article  CAS  Google Scholar 

  • Li J-M, Meng X-G, Hu C-W, Du J (2009a) Adsorption of phenol, p-chlorophenol and p-nitrophenol onto functional chitosan. Bioresour Technol 100(3):1168–1173. doi:10.1016/j.biortech.2008.09.015

    Article  CAS  Google Scholar 

  • Li T, Yuan S, Wan J, Lin L, Long H, Wu X, Lu X (2009b) Pilot scale electrokinetic-movement of HCB and Zn in real contaminated sediments enhanced with hydroxypropyl-cyclodextrin. Chemosphere 76(9):1226–1232. doi:10.1016/j.chemosphere.2009.05.045

    Article  CAS  Google Scholar 

  • Li N, Mei Z, Ding S (2010) 2,4-Dichlorophenol sorption on cyclodextrin polymers. J Incl Phenom Macrocycl Chem 68(1):123–129. doi:10.1007/s10847-010-9751-2

    Article  CAS  Google Scholar 

  • Liebscher H (2000) Economic solutions for compliance to the new European VOC Directive. Prog Org Coat 40(1–4):75–83. doi:10.1016/S0300-9440(00)00139-9

    Article  CAS  Google Scholar 

  • Lindsey ME, Xu G, Lu J, Tarr MA (2003) Enhanced Fenton degradation of hydrophobic organics by simultaneous iron and pollutant complexation with cyclodextrins. Sci Total Environ 307(1–3):215–229. doi:10.1016/S0048-9697(02)00544-2

    Article  CAS  Google Scholar 

  • Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95(3):735–758. doi:10.1021/cr00035a013

    Article  CAS  Google Scholar 

  • Liu L, Guo Q-X (2002) The driving forces in the inclusion complexation of cyclodextrins. J Incl Phenom Macrocycl Chem 42(1–2):1–14. doi:10.1023/A:1014520830813

    Article  CAS  Google Scholar 

  • Lu P, Wu F, Deng N (2004) Enhancement of TiO2 photocatalytic redox ability by β-cyclodextrin in suspended solutions. Appl Catal B 53(2):87–93. doi:10.1016/j.apcatb.2004.04.016

    Article  CAS  Google Scholar 

  • Mahlambi MM, Malefetse TJ, Mamba BB, Krause RW (2009) β-Cyclodextrin-ionic liquid polyurethanes for the removal of organic pollutants and heavy metals from water: synthesis and characterization. J Polym Res 17(4):589–600. doi:10.1007/s10965-009-9347-y

    Article  CAS  Google Scholar 

  • Mallard Favier I, Baudelet D, Fourmentin S (2011) VOC trapping by new crosslinked cyclodextrin polymers. J Incl Phenom Macrocycl Chem 69(3–4):433–437. doi:10.1007/s10847-010-9776-6

    Article  CAS  Google Scholar 

  • Mamba BB, Krause RW, Malefetse TJ, Nxumalo EN (2007) Monofunctionalized cyclodextrin polymers for the removal of organic pollutants from water. Environ Chem Lett 5(2):79–84. doi:10.1007/s10311-006-0082-x

    Article  CAS  Google Scholar 

  • Manolikar MK, Sawant MR (2003) Study of solubility of isoproturon by its complexation with β-cyclodextrin. Chemosphere 51(8):811–816. doi:10.1016/S0045-6535(03)00099-7

    Article  CAS  Google Scholar 

  • Martel B, Devassine M, Crini G, Weltrowski M, Bourdonneau M, Morcellet M (2001) Preparation and sorption properties of a β-cyclodextrin-linked chitosan derivative. J Polym Sci Polym Chem 39(1):169–176. doi:10.1002/1099-0518(20010101)39:1<169::AID-POLA190>3.0.CO;2-G

    Article  CAS  Google Scholar 

  • Martin KA, Czarnik AW (1994) Facile preparation of the β-cyclodextrinyl aldehyde. Tetrahedron Lett 35(37):6781–6782. doi:10.1016/0040-4039(94)85003-8

    Article  CAS  Google Scholar 

  • Matta R, Hanna K, Kone T, Chiron S (2008) Oxidation of 2,4,6-trinitrotoluene in the presence of different iron-bearing minerals at neutral pH. Chem Eng J 144(3):453–458. doi:10.1016/j.cej.2008.07.013

    Article  CAS  Google Scholar 

  • Maturi K, Reddy KR (2006) Simultaneous removal of organic compounds and heavy metals from soils by electrokinetic remediation with a modified cyclodextrin. Chemosphere 63(6):1022–1031. doi:10.1016/j.chemosphere.2005.08.037

    Article  CAS  Google Scholar 

  • Mccray JE, Brusseau ML (1998) Cyclodextrin-enhanced in situ flushing of multiple-component immiscible organic liquid contamination at the field scale: mass removal effectiveness. Environ Sci Technol 32(9):1285–1293. doi:10.1021/es970579+

    Article  CAS  Google Scholar 

  • Melton LD, Slessor KN (1971) Synthesis of monosubstituted cyclohexaamyloses. Carbohydr Res 18(1):29–37. doi:10.1016/S0008-6215(00)80256-6

    Article  CAS  Google Scholar 

  • Mhlanga SD, Mamba BB, Krause RW, Malefetse TJ (2007) Removal of organic contaminants from water using nanosponge cyclodextrin polyurethanes. J Chem Technol Biotechnol 82(4):382–388. doi:10.1002/jctb.1681

    Article  CAS  Google Scholar 

  • Mizobuchi Y, Tanaka M, Kawaguchi Y, Shono T (1981) Sorption behavior of low molecular weight organic vapors on β-cyclodextrin polyurethane resins. Bull Chem Soc Jpn 54(8):2487–2490. doi:10.1246/bcsj.54.2487

    Article  CAS  Google Scholar 

  • Molnar M, Leigib L, Gruiz K, Fenyvesi E, Szaniszlo N, Szejtli J, Fava F (2005) Enhanced biodegradation of transformer oil in soils with cyclodextrins – from the laboratory to the field. Biodegradation 16(2):159–168. doi:10.1007/s10532-004-4873-0

    Article  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Surfactant-enhanced remediation of contaminated soil: a review. Eng Geol 60(1–4):371–380. doi:10.1016/S0013-7952(00)00117-4

    Article  Google Scholar 

  • Murai S, Imajo S, Inumaru H, Takahashi K, Hattori K (1997) Adsorption and recovery of ionic surfactants by β-cyclodextrin polymer. J Colloid Interface Sci 190(2):488–490. doi:10.1006/jcis.1997.4873

    Article  CAS  Google Scholar 

  • Murai S, Imajo S, Takasu Y, Takahashi K, Hattori K (1998) Removal of phthalic acid esters from aqueous solution by inclusion and adsorption on β-cyclodextrin. Environ Sci Technol 32(6):782–787. doi:10.1021/es970463d

    Article  CAS  Google Scholar 

  • Nakagawa T, Ueno K, Kashiwa M, Watanabe J (1994) The stereoselective synthesis of cyclomaltopentaose. A novel cyclodextrin homologue with D.P. five. Tetrahedron Lett 35(12):1921–1924. doi:10.1016/S0040-4039(00)73196-0

    Article  CAS  Google Scholar 

  • Orprecio R, Evans CH (2003) Polymer-immobilized cyclodextrin trapping of model organic pollutants in flowing water streams. J Appl Polym Sci 90(8):2103–2110. doi:10.1002/a 12818

    Article  CAS  Google Scholar 

  • Osajima T, Deguchi T, Sanemasa I (1991) Association of cycloalkanes with cyclodextrins in aqueous medium. Bull Chem Soc Jpn 64(9):2705–2709. doi:10.1246/bcsj.64.2705

    Article  CAS  Google Scholar 

  • Ozmen EY, Yilmaz M (2007) Use of β-cyclodextrin and starch based polymers for sorption of Congo red from aqueous solutions. J Hazard Mater 148(1–2):303–310. doi:10.1016/j.jhazmat.2007.02.042

    Article  CAS  Google Scholar 

  • Ozmen EY, Sezgin M, Yilmaz A, Yilmaz M (2008) Synthesis of β-cyclodextrin and starch based polymers for sorption of azo dyes from aqueous solutions. Bioresour Technol 99(3):526–531. doi:10.1016/j.biortech.2007.01.023

    Article  CAS  Google Scholar 

  • Pérez-Martínez JI, Ginés JM, Morillo E, González-Rodríguez ML, Moyano Méndez JR (2000) Improvement of the desorption of the pesticide 2,4-D via complexation with HP-β-cyclodextrin. Pest Manage Sci 56(5):425–430. doi:10.1002/(SICI)1526-4998(200005)56:5<425::AID-PS156>3.0.CO;2-W

    Article  Google Scholar 

  • Phan TNT, Bacquet M, Laureyns J, Morcellet M (1999) New silica gels functionalized with 2-hydroxy-3-methacryloyloxypropyl- β-cyclodextrin using coating or grafting methods. Phys Chem Chem Phys 1(22):5189–5195. doi:10.1039/a905713g

    Article  CAS  Google Scholar 

  • Phan TNT, Bacquet M, Morcellet M (2000) Synthesis and characterization of silica gels functionalized with monochlorotriazinyl β-cyclodextrin and their sorption capacities towards organic compounds. J Incl Phenom Macrocycl Chem 38(1–4):345–359. doi:10.1023/A:1008169111023

    Article  CAS  Google Scholar 

  • Phan TNT, Bacquet M, Morcellet M (2002) The removal of organic pollutants from water using new silica-supported β-cyclodextrin derivatives. React Funct Polym 52(3):117–125. doi:10.1016/S1381-5148(02)00079-2

    Article  CAS  Google Scholar 

  • Pitha J, Szabo L, Fales H (1987) Reaction of cyclodextrins with propylene oxide or with glycidol: analysis of product distribution. Carbohydr Res 168:191–198. doi:10.1016/0008-6215(87)80025-3

    Article  CAS  Google Scholar 

  • Pluemsab W, Fukazawa Y, Furuike T, Nodasaka Y, Sakairi N (2007) Cyclodextrin-linked alginate beads as supporting materials for Sphingomonas cloacae, a nonylphenol degrading bacteria. Bioresour Technol 98(11):2076–2081. doi:10.1016/j.biortech.2006.08.009

    Article  CAS  Google Scholar 

  • Purwaningsih IS, Hill GA, Headley JV (2004) Mass transfer and bioremediation of naphthalene particles in a roller bioreactor. Water Res 38(8):2027–2034. doi:10.1016/j.watres.2004.01.035

    Article  CAS  Google Scholar 

  • Qiu X-M, Sun D-Z, Wei X-L, Yin B-L (2007) Thermodynamic study of the inclusion interaction between Gemini surfactants and cyclodextrins by isothermal titration microcalorimetry. J Solut Chem 36(3):303–312. doi:10.1007/s10953-006-9115-0

    Article  CAS  Google Scholar 

  • Qiu X, Wub P, Zhang H, Li M, Yan Z (2009) Isolation and characterization of Arthrobacter sp. HY2 capable of degrading a high concentration of p-nitrophenol. Bioresour Technol 100(21):5243–5248. doi:10.1016/j.biortech.2009.05.056

    Article  CAS  Google Scholar 

  • Rafin C, Veignie E, Fayeulle A, Surpateanu G (2009) Benzo[a]pyrene degradation using simultaneously combined chemical oxidation, biotreatment with Fusarium solani and cyclodextrins. Bioresour Technol 100(12):3157–3160. doi:10.1016/j.biortech.2009.01.012

    Article  CAS  Google Scholar 

  • Romo A, Peñas FJ, Isasi JR, García-Zubiri IX, González-Gaitano G (2008) Extraction of phenols from aqueous solutions by β-cyclodextrin polymers. Comparison of sorptive capacities with other sorbents. React Funct Polym 68(1):406–413. doi:10.1016/j.reactfunctpolym.2007.07.005

    Article  CAS  Google Scholar 

  • Rong D, D’Souza VT (1990) A convenient method for functionalization of the 2-position of ­cyclodextrins. Tetrahedron Lett 31(30):4275–4278. doi:10.1016/S0040-4039(00)97599-3

    Article  CAS  Google Scholar 

  • Saenger W (1980) Cyclodextrin inclusion compounds in research and industry. Angew Chem Int Edit 19(5):344–362. doi:10.1002/anie.198003441

    Article  Google Scholar 

  • Saenger W, Jacob J, Gessler K, Steiner T, Hoffmann D, Sanbe H, Koizumi K, Smith SM, Takaha T (1998) Structures of the common cyclodextrins and their larger analogues. Beyond the doughnut. Chem Rev 98(5):1787–1802. doi:10.1021/cr9700181

    Article  CAS  Google Scholar 

  • Saito Y, Hashizaki K, Taguchi H, Ogawa N (2003) Complexation of butylbenzenes with 2-hydroxypropyl-cyclodextrins in aqueous solution. J Environ Sci Health A Tox Hazard Subst Environ Eng 38(5):771–777. doi:10.1081/ESE-120018590

    Article  CAS  Google Scholar 

  • Saito Y, Misawa K, Hashizaki K, Taguchi H, Ogawa N, Ueda H (2004) A modified method using static head-space gas chromatography for determining the stability constants of 1-alkanol/α-cyclodextrin complexation. Chem Pharm Bull 52(2):259–261. doi:10.1248/cpb.52.259

    Article  CAS  Google Scholar 

  • Salipira KL, Mamba BB, Krause RW, Malefetse TJ, Durbach SH (2007) Carbon nanotubes and cyclodextrin polymers for removing organic pollutants from water. Environ Chem Lett 5(1):13–17. doi:10.1007/s10311-006-0057-y

    Article  CAS  Google Scholar 

  • Salipira KL, Krause RW, Mamba BB, Malefetse TJ, Cele LM, Durbach SH (2008) Cyclodextrin polyurethanes polymerized with multi-walled carbon nanotubes: synthesis and characterization. Mater Chem Phys 111(2–3):218–224. doi:10.1016/j.matchemphys.2008.03.026

    Article  CAS  Google Scholar 

  • Sanemasa I, Akamine Y (1987) Association of benzene and alkylbenzenes with cyclodextrins in aqueous medium. Bull Chem Soc Jpn 60(6):2059–2066. doi:10.1246/bcsj.60.2059

    Article  CAS  Google Scholar 

  • Sanemasa I, Takuma T, Deguchi T (1989) Association of some polynuclear aromatic hydrocarbons with cyclodextrins in aqueous medium. Bull Chem Soc Jpn 62(10):3098–3102. doi:10.1246/bcsj.62.3098

    Article  CAS  Google Scholar 

  • Sanemasa I, Osajima T, Deguchi T (1990) Association of C5–C9 normal alkanes with cyclodextrins in aqueous medium. Bull Chem Soc Jpn 63(10):2814–2819. doi:10.1246/bcsj.63.2814

    Article  CAS  Google Scholar 

  • Sawicki R, Mercier L (2006) Evaluation of mesoporous cyclodextrin-silica nanocomposites for the removal of pesticides from aqueous media. Environ Sci Technol 40(6):1978–1983. doi:10.1021/es051441r

    Article  CAS  Google Scholar 

  • Schwartz A, Bar R (1995) Cyclodextrin enhanced degradation of toluene and p-toluic acid by Pseudomonas putida. Appl Environ Microbiol 61(7):2727–2731

    CAS  Google Scholar 

  • Sevillano X, Isasi JR, Peñas FJ (2008) Feasibility study of degradation of phenol in a fluidized bed bioreactor with a cyclodextrin polymer as biofilm carrier. Biodegradation 19(4):589–597. doi:10.1007/s10532-007-9164-0

    Article  CAS  Google Scholar 

  • Shao D, Sheng G, Chen C, Wang X, Nagatsu M (2010) Removal of polychlorinated biphenyls from aqueous solutions using β-cyclodextrin grafted multiwalled carbon nanotubes. Chemosphere 79(7):679–685. doi:10.1016/j.chemosphere.2010.03.008

    Article  CAS  Google Scholar 

  • Shirin S, Buncel E, Van Loon GW (2004) Effect of cyclodextrins on iron-mediated dechlorination of trichloroethylene – a proposed new mechanism. Can J Chem 82(12):1674–1685. doi:10.1139/V04-140

    Article  CAS  Google Scholar 

  • Shixiang G, Liansheng W, Qingguo H, Sukui H (1998) Solubilization of polycyclic aromatic hydrocarbons by β-cyclodextrin and carboxymethyl-β-cyclodextrin. Chemosphere 37(7):1299–1305. doi:10.1016/S0045-6535(98)00127-1

    Article  Google Scholar 

  • Singh M, Sharma R, Banerjee UC (2002) Biotechnological applications of cyclodextrins. Biotechnol Adv 20(5–6):341–359. doi:10.1016/S0734-9750(02)00020-4

    Article  CAS  Google Scholar 

  • Siu M, Yaylayan VA, Bélanger JMR, Paré JRJ (2005) Microwave-assisted immobilization of β-cyclodextrin on PEGylated Merrifield resins. Tetrahedron Lett 46(21):3737–3739. doi:10.1016/j.tetlet.2005.03.154

    Article  CAS  Google Scholar 

  • Sivaraman C, Ganguly A, Mutnuri S (2010) Biodegradation of hydrocarbons in the presence of cyclodextrins. World J Microbiol Biotechnol 26(2):227–232. doi:10.1007/s11274-009-0164-6

    Article  CAS  Google Scholar 

  • Skold ME, Thyne GD, Drexler JW, Macalady DL, Mccray JE (2008) Enhanced solubilization of a metal –  organic contaminant mixture (Pb, Sr, Zn, and perchloroethylene) by cyclodextrin. Environ Sci Technol 42(23):8930–8934. doi:10.1021/es801835x

    Article  CAS  Google Scholar 

  • Skold ME, Thyne GD, Drexler JW, McCray JE (2009) Solubility enhancement of seven metal contaminants using carboxymethyl-β-cyclodextrin (CMCD). J Contam Hydrol 107(3–4):108–113. doi:10.1016/j.jconhyd.2009.04.006

    Article  CAS  Google Scholar 

  • Stella VJ, Rajewski RA (1991) Patent WO 9111172

    Google Scholar 

  • Stroud JL, Tzima M, Paton GI, Semple KT (2009) Influence of hydroxypropyl-β-cyclodextrin on the biodegradation of 14C-phenanthrene and 14C-hexadecane in soil. Environ Pollut 157(10):2678–2683. doi:10.1016/j.envpol.2009.05.009

    Article  CAS  Google Scholar 

  • Szaniszlo N, Fenyvesi E, Balla J (2005) Structure-stability study of cyclodextrin complexes with selected volatile hydrocarbon contaminants of soils. J Incl Phenom Macrocycl Chem 53(3):241–248. doi:10.1007/s10847-005-0245-6

    Article  CAS  Google Scholar 

  • Szejtli J (1982) Cyclodextrins and their inclusion complexes. Akademiai Kiado, Budapest

    Google Scholar 

  • Szejtli J (1989) Downstream processing using cyclodextrins. Trends Biotechnol 7(7):170–174. doi:10.1016/0167-7799(89)90094-2

    Article  CAS  Google Scholar 

  • Szejtli J (1996a) Chemistry, physical and biological properties of cyclodextrins. Compr Supramol Chem 3:5–40

    CAS  Google Scholar 

  • Szejtli J (1996b) Inclusion of guest molecules, selectivity and molecular recognition by cyclodextrins. Compr Supramol Chem 3:189–204

    CAS  Google Scholar 

  • Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98(5):1743–1753. doi:10.1021/cr970022c

    Article  CAS  Google Scholar 

  • Szente L (1996) Preparation of cyclodextrin complexes. Compr Supramol Chem 3:243–252

    CAS  Google Scholar 

  • Szente L, Fenyvesi E, Szejtli J (1999) Entrapment of iodine with cyclodextrins- potential application of cyclodextrins in nuclear waste management. Environ Sci Technol 33(24):4495–4498. doi:10.1021/es981287r

    Article  CAS  Google Scholar 

  • Tachikawa T, Tojo S, Fujitsuka M, Majima T (2006) One-electron oxidation pathways during β-cyclodextrin-modified TiO2 photocatalytic reactions. Chem Eur J 12(29):7585–7594. doi:10.1002/chem.200600097

    Article  CAS  Google Scholar 

  • Takahashi K, Hattori K, Toda F (1984) Monotosylated α- and β-cyclodextrins prepared in an alkaline aqueous solution. Tetrahedron Lett 25(31):3331–3334. doi:10.1016/S0040-4039(01)81377-0

    Article  CAS  Google Scholar 

  • Takeo K, Mitoh H, Uemura K (1989) Selective chemical modification of cyclomalto-oligosaccharides via tert-butyldimethylsilylation. Carbohydr Res 187(2):203–221. doi:10.1016/0008-6215(89)80004-7

    Article  CAS  Google Scholar 

  • Takuma T, Deguchi T, Sanemasa I (1990) Association of halobenzenes with cyclodextrins in aqueous medium. Bull Chem Soc Jpn 63(4):1246–1248. doi:10.1246/bcsj.63.1246

    Article  CAS  Google Scholar 

  • Tick GR, Lourenso F, Wood AL, Brusseau ML (2003) Pilot-scale demonstration of cyclodextrin as a solubility-enhancement agent for remediation of a tetrachloroethene-contaminated aquifer. Environ Sci Technol 37(24):5829–5834. doi:10.1021/es030417f

    Article  CAS  Google Scholar 

  • Tojima T, Katsura H, Nishiki M, Nishi N, Tokura S, Sakairi N (1999) Chitosan beads with pendant α-cyclodextrin: preparation and inclusion property to nitrophenolates. Carbohydr Polym 40(1):17–22. doi:10.1016/S0144-8617(99)00030-2

    Article  CAS  Google Scholar 

  • Toma SH, Bonacin JA, Araki K, Toma HE (2006) Selective host-guest interactions on mesoporous TiO2 films modified with carboxymethyl-β-cyclodextrin. Surf Sci 600(19):4591–4597. doi:10.1016/j.susc.2006.07.027

    Article  CAS  Google Scholar 

  • Trotta F, Cavalli R (2009) Characterization and applications of new hyper-cross-linked cyclodextrins. Compos Interface 16(1):39–48. doi:10.1163/156855408X379388

    Article  CAS  Google Scholar 

  • Trotta F, Tumiatti W (2003) Cross-linked polymers based on cyclodextrin for removing polluting agents, WO 03/085002

    Google Scholar 

  • Uekama K, Hirashima N, Horiuchi Y, Hirayama F, Ijitsu T, Ueno MJ (1987) Ethylated β-cyclodextrins as hydrophobic drug carriers: sustained release of diltiazem in the rat. J Pharm Sci 76:660–661. doi:10.1002/jps.2600760816

    Article  CAS  Google Scholar 

  • Uemasu I, Kushiyama S, Aizawa R (1996) Capture of volatile chlorinated hydrocarbons by aqueous solutions of branched cyclodextrins. J Incl Phenom Macrocycl Chem 25(1–3):221–224. doi:10.1007/BF01041573

    Article  CAS  Google Scholar 

  • Veignie E, Rafin C, Landy D, Fourmentin S, Surpateanu G (2009) Fenton degradation assisted by cyclodextrins of a high molecular weight polycyclic aromatic hydrocarbon benzo[a]pyrene. J Hazard Mater 168(2–3):1296–1301. doi:10.1016/j.jhazmat.2009.03.012

    Article  CAS  Google Scholar 

  • Viglianti C, Hanna K, De Brauer C, Germain P (2006) Removal of polycyclic aromatic hydrocarbons from aged-contaminated soil using cyclodextrins: experimental study. Environ Pollut 140(3):427–435. doi:10.1016/j.envpol.2005.08.002

    Article  CAS  Google Scholar 

  • Villaverde J, Maqueda C, Undabeytia T, Morillo E (2007) Effect of various cyclodextrins on photodegradation of a hydrophobic herbicide in aqueous suspensions of different soil colloidal components. Chemosphere 69(4):575–584. doi:10.1016/j.chemosphere.2007.03.022

    Article  CAS  Google Scholar 

  • Virkutyte J, Sillanpää M, Latostenmaa P (2002) Electrokinetic soil remediation – critical overview. Sci Total Environ 289(1–3):97–121. doi:10.1016/S0048-9697(01)01027-0

    Article  CAS  Google Scholar 

  • Wang X, Brusseau ML (1993) Solubilization of some low-polarity organic compounds by hydroxypropyl-β-cyclodextrin. Environ Sci Technol 27(13):2821–2825. doi:10.1021/es00049a023

    Article  CAS  Google Scholar 

  • Wang X, Brusseau ML (1995) Simultaneous complexation of organic compounds and heavy metals by a modified cyclodextrin. Environ Sci Technol 29(10):2632–2635. doi:10.1021/es00010a026

    Article  CAS  Google Scholar 

  • Wang G, Wu F, Zhang X, Luo M, Deng N (2006a) Enhanced TiO2 photocatalytic degradation of bisphenol A by β-cyclodextrin in suspended solutions. J Photochem Photobiol A 179(1–2):49–56. doi:10.1016/j.jphotochem.2005.07.011

    Article  CAS  Google Scholar 

  • Wang G, Wu F, Zhang X, Luo M, Deng N (2006b) Enhanced TiO2 photocatalytic degradation of bisphenol E by β-cyclodextrin in suspended solutions. J Hazard Mater 133(1–3):85–91. doi:10.1016/j.jhazmat.2005.09.058

    Article  CAS  Google Scholar 

  • Wang G, Qi P, Xue X, Wu F, Deng N (2007) Photodegradation of bisphenol Z by UV irradiation in the presence of β-cyclodextrin. Chemosphere 67(4):762–769. doi:10.1016/j.chemosphere.2006.10.041

    Article  CAS  Google Scholar 

  • Yamasaki H, Makihata Y, Fukunaga K (2006) Efficient phenol removal of wastewater from phenolic resin plants using crosslinked cyclodextrin particles. J Chem Technol Biotechnol 81(7):1271–1276. doi:10.1002/jctb.1545

    Article  CAS  Google Scholar 

  • Yamasaki H, Makihata Y, Fukunaga K (2008) Preparation of crosslinked β-cyclodextrin polymer beads and their application as a sorbent for removal of phenol from wastewater. J Chem Technol Biotechnol 83(7):991–997. doi:10.1002/jctb.1904

    Article  CAS  Google Scholar 

  • Yang J-S, Baek K, Kwon T-S, Yang J-W (2006) Competitive immobilization of multiple component chlorinated solvents by cyclodextrin derivatives. J Hazard Mater 137(3):1866–1869. doi:10.1016/j.jhazmat.2006.04.020

    Article  CAS  Google Scholar 

  • Yardin G, Chiron S (2006) Photo–Fenton treatment of TNT contaminated soil extract solutions obtained by soil flushing with cyclodextrin. Chemosphere 62:1395–1402. doi:10.1016/j.chemosphere.2005.05.019

    Article  CAS  Google Scholar 

  • Yilmaz A, Yilmaz E, Yilmaz M, Bartsch RA (2007) Removal of azo dyes from aqueous solutions using calix[4]arene and β-cyclodextrin. Dyes Pigment 74(1):54–59. doi:10.1016/j.dyepig.2006.01.011

    Article  CAS  Google Scholar 

  • Yilmaz E, Memon S, Yilmaz M (2010) Removal of direct azo dyes and aromatic amines from aqueous solutions using two β-cyclodextrin-based polymers. J Hazard Mater 174(1–3):592–597. doi:10.1016/j.jhazmat.2009.09.093

    Article  CAS  Google Scholar 

  • Yu JC, Jiang Z-T, Liu H-Y, Yu J, Zhang L (2003) β-Cyclodextrin epichlorohydrin copolymer as a solid-phase extraction adsorbent for aromatic compounds in water samples. Anal Chim Acta 477(1):93–101. doi:10.1016/S0003-2670(02)01411-3

    Article  CAS  Google Scholar 

  • Zeng Q-R, Tang H-X, Liao B-H, Zhong T, Tang C (2006) Solubilization and desorption of methyl-parathion from porous media: a comparison of hydroxypropyl-β-cyclodextrin and two nonionic surfactants. Water Res 40(7):1351–1358. doi:10.1016/j.watres.2006.01.036

    Article  CAS  Google Scholar 

  • Zhang X, Wu F, Wang Z, Guo Y, Deng N (2009) Photocatalytic degradation of 4,4′-biphenol in TiO2 suspension in the presence of cyclodextrins: a trinity integrated mechanism. J Mol Catal A Chem 301(1–2):134–139. doi:10.1016/j.molcata.2008.11.022

    Article  CAS  Google Scholar 

  • Zhang X, Wu F, Deng N (2010) Degradation of paracetamol in self assembly β-cyclodextrin/TiO2 suspension under visible irradiation. Catal Commun 11(5):422–425. doi:10.1016/j.catcom.2009.11.013

    Article  CAS  Google Scholar 

  • Zhou J, Jiang W, Ding J, Zhang X, Gao S (2007) Effect of Tween 80 and β-cyclodextrin on degradation of decabromodiphenyl ether (BDE-209) by White Rot Fungi. Chemosphere 70(2):172–177. doi:10.1016/j.chemosphere.2007.06.036

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Fourmentin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Landy, D., Mallard, I., Ponchel, A., Monflier, E., Fourmentin, S. (2012). Cyclodextrins for Remediation Technologies. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds) Environmental Chemistry for a Sustainable World. Environmental Chemistry for a Sustainable World. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2442-6_2

Download citation

Publish with us

Policies and ethics