Skip to main content

Biogas Technologies and Cleaning Techniques

  • Chapter
  • First Online:

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW))

Abstract

The acclivitious rise in fuel costs and taxation burden have significantly triggered the scientific community to make substantial changes in the pattern of using renewable energy sources. Gases arising from anaerobic digesters and landfills are widely used as fuel to produce electricity, drive pumps and fire boilers. Biogas can be defined as a biofuel produced by a large number of anaerobic microbial species that inherently possess the capability to ferment organic matter under controlled temperature, moisture and pH to yield a high energy value fuel. Methane and carbon dioxide are the two predominant compounds present in biogas, along with trace quantities of gases such as water vapour, hydrogen sulfide (H2S), halogenated hydrocarbons, siloxanes, ammonia, nitrogen, and oxygen. Biogas can be used as a fuel for generating heat and electricity and in feed boilers. However, biogas has to be cleaned and upgraded, in order to use it effectively as a fuel or to distribute it in the natural gas grid. Biogas cleaning not only increases the calorific value, but also reduces the risk of corrosion. In this chapter, we outline the importance of biogas from their source, property and application view-points. Secondly, the various physico-chemical and biological methods commonly used for biogas cleaning were reviewed by highlighting the operational advantages and limitations in each case. We have also presented the different strategies adopted to control specific impurities present in biogas, i.e., CO2, siloxanes, H2S and other trace compounds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Accettola F, Guebitz GM, Schoeftner R (2008) Siloxane removal from biogas by biofiltration: biodegradation studies. Clean Technol Environ Policy 10:211–218

    Article  CAS  Google Scholar 

  • Ahrer W, Accettola F, Trogisch S, Schöftner R (2006) Upgrading of biogas for its usage in high-temperature fuel cells and gas grid injection. In: Lens P, Kennes C, Le Cloirec P, Deshusses MA (eds) Waste gas treatment for resource recovery, vol 28. IWA Publishing, London, pp 479–487

    Google Scholar 

  • Ajhar M, Travesset M, Yuce S, Melin T (2010) Review: siloxane removal from landfill and digester gas-a technology overview. Bioresour Technol 101:2913–2923

    Article  Google Scholar 

  • Appels L, Baeyens J, Dewil R (2008) Siloxane removal from biosolids by peroxidation. Energy Convers Manage 49:2859–2864

    Article  CAS  Google Scholar 

  • Aroca GE, Urrutia H, Núñez D, Oyarzún P, Arancibia A, Guerrero K (2007) Comparison on the removal of hydrogen sulfide in biotrickling filters inoculated with Thiobacillus thioparus and Acidithiobacillus thiooxidans. J Biotechnol 10:515–520

    Google Scholar 

  • Bailón L (2007) An innovate biotrickling filter for H2S removal from biogas. In: Kennes C, Veiga MC (eds) Proceedings of the 2nd international congress on biotechniques for air pollution control, Universidade da Coruña, A Coruña, 3–5 October 2007, pp 215–224

    Google Scholar 

  • Bandosz TJ, Bagreev A, Adib F, Turk A (2000) Unmodified versus caustic-impregnated carbons for control of hydrogen sulfide emissions from sewage plants. Environ Sci Technol 34:1069–1074

    Article  CAS  Google Scholar 

  • Beristain Cardoso R, Sierra-Alvarez R, Rowlette P, Razo Flores E, Gómez J, Field JA (2006) Sulfide oxidation under chemolithoautotrophic denitrifying conditions. Biotechnol Bioeng 95:1148–1157

    Article  Google Scholar 

  • Chynoweth DP (1987) Overview. In: Chynoweth DP, Isaacson R (eds) Anaerobic digestion of biomass. Elsevier Applied Science Publishers, Ltd, New York, pp 1–14

    Google Scholar 

  • Converti A, Oliveira RPS, Torres BR, Lodi A, Zilli M (2009) Biogas production and valorization by means of a two-step biological process. Bioresour Technol 100:5771–5776

    Article  CAS  Google Scholar 

  • de Hullu J, Maassen JIW, van Meel PA, Shazad S, Vaessen JMP, Bini L, Reijenga JC (2008) Comparing different biogas upgrading techniques. Project report commissioned by Dirkse Milieutechniek BV and submitted to the Technical University of Eindhoven

    Google Scholar 

  • Deng L, Hägg M-B (2010) Techno-economic evaluation of biogas upgrading process using CO2 facilitated transport membrane. Int J Greenh Gas Con 4:638–646

    Article  CAS  Google Scholar 

  • Dewil R, Appels L, Baeyens J (2006) Energy use of biogas hampered by the presence of siloxanes. Energy Convers Manage 47:1711–1722

    Article  CAS  Google Scholar 

  • Favre E, Bounaceur R, Roizard D (2009) Biogas, membranes and carbon dioxide capture. J Memb Sci 328:11–14

    Article  CAS  Google Scholar 

  • Finocchio E, Montanari T, Garuti G, Pistarino C, Federico F, Cugino M, Busca G (2009) Purification of biogases from siloxanes by adsorption: on the regenerability of activated carbon sorbents. Energ Fuel 23:4156–4159

    Article  CAS  Google Scholar 

  • Gerardi MH (2003) The microbiology of anaerobic digesters. Wiley, Hoboken

    Book  Google Scholar 

  • Graiver D, Farminer KW, Narayan R (2003) A review of the fate and effects of silicones in the environment. J Polym Environ 11:129–136

    Article  CAS  Google Scholar 

  • Guo XJ, Tak JK, Johnson RL (2009) Ammonia removal from air stream and biogas by a H2SO4 impregnated adsorbent originating from waste wood-shavings and biosolids. J Hazard Mater 166:372–376

    Google Scholar 

  • Haberbauer M (2005) Biofuel quality for fuel cell applications. In: Lens P, Westermann P, Haberbauer M, Moreno A (eds) Biofuels for fuel cells. IWA Publishing, London, pp 403–413

    Google Scholar 

  • Harasimowicz M, Orluk P, Zakrzewska-Trznadel G, Chmielewskia AG (2007) Application of polyimide membranes for biogas purification and enrichment. J Hazard Mater 144:698–702

    Article  CAS  Google Scholar 

  • House H (2007) Alternative energy sources-biogas production. In: Proceedings of the London swine conference-today’s challenges - tomorrow’s opportunities, London, Ontario, 3–4 April 2007, pp 119–128

    Google Scholar 

  • Jaffrin A, Bentounes N, Joan AM, Makhlouf S (2003) Landfill biogas for heating greenhouses and providing carbon dioxide supplement for plant growth. Biosyst Eng 86:113–123

    Article  Google Scholar 

  • Jiang X, Yan R, Tay JH (2009) Simultaneous autotrophic biodegradation of H2S and NH3 in a biotrickling filter. Chemosphere 75:1350–1355

    Article  CAS  Google Scholar 

  • Jin Y, Veiga MC, Kennes C (2005) Effects of pH, CO2 and flow pattern on the autotrophic degradation of hydrogen sulfide in a biotrickling filter. Biotechnol Bioeng 92:462–471

    Article  CAS  Google Scholar 

  • Jordão EP, Pessoa CA (1995) Tratamento de esgotos domésticos, 3rd edn. ABES-Associação Brasileira de Engenharia Sanitária e Ambiental, Rio de Janeiro

    Google Scholar 

  • Kapdi SS, Vijay VK, Rajesh SK, Prasad R (2004) Biogas scrubbing, compression and storage: perspective and prospectus in Indian context. Renew Energ 30:1195–1202

    Article  Google Scholar 

  • Kennes C, Thalasso F (1998) Waste gas biotreatment technology. J Chem Technol Biotechnol 72:303–319

    Article  CAS  Google Scholar 

  • Kennes C, Veiga MC (2001) Conventional biofilters. In: Kennes C, Veiga MC (eds) Bioreactors for waste gas treatment. Kluwer Academic Publisher, Dordrecht, pp 47–98

    Chapter  Google Scholar 

  • Kennes C, Veiga MC, Prado O (2001) Non-biological treatment technologies. In: Kennes C, Veiga MC (eds) Bioreactors for waste gas treatment. Kluwer Academic Publisher, Dordrecht, pp 17–46

    Chapter  Google Scholar 

  • Kennes C, Rene ER, Veiga MC (2009a) Bioprocesses for air pollution control. J Chem Technol Biotechnol 84:1419–1436

    Article  CAS  Google Scholar 

  • Kennes C, Montes M, López ME, Veiga MC (2009b) Waste gas treatment in bioreactors: environmental engineering aspects. Can J Civil Eng 36:1887–1894

    Article  CAS  Google Scholar 

  • Kim HS, Kim YJ, Chuung JS, Xie Q (2002) Long-term operation of a biofilter for simultaneous removal of H2S and NH3. J Air Waste Manag 52:1389–1398

    Article  CAS  Google Scholar 

  • Kuenen JG (1975) Colourless sulphur bacteria and their role in the sulphur cycle. Plant Soil 43:49–76

    Article  CAS  Google Scholar 

  • Kumar PS, Hogendoorn JA, Feron PHM, Versteeg GF (2002) New absorption liquids for the removal of CO2 from dilute gas streams using membrane contactors. Chem Eng Sci 57:1639–1651

    Article  CAS  Google Scholar 

  • Malhautier L, Gracian C, Roux JC, Fanlo JL, Le Cloirec P (2003) Biological treatment process of air loaded with an ammonia and hydrogen sulfide mixture. Chemosphere 50:145–153

    Article  CAS  Google Scholar 

  • Matsui T, Imamura S (2009) Removal of siloxane from digestion gas of sewage sludge. Bioresour Technol 101:529–532

    Google Scholar 

  • Mattiasson B (2005) Ekologisk lunga för biogasuppgradering. Nationellt Samverkansprojekt Biogas i Fordon, 1–14

    Google Scholar 

  • Mesa MM, Macías M, Cantero D (2002) Biological iron oxidation by Acidithiobacillus ferrooxidans. Chem Biochem Eng Q 16:69–73

    CAS  Google Scholar 

  • Osorio F, Torres JC (2009) Biogas purification from anaerobic digestion in a wastewater treatment plant for biofuel production. Renew Energ 34:2164–2171

    Article  CAS  Google Scholar 

  • Ottengraf SPP, Diks R (1992) Process technology of biotechniques. In: Dragt AJ, van Ham J (eds) Biotechniques for air pollution abatement and odour control policies. Elsevier, Amsterdam, pp 17–32

    Google Scholar 

  • Persson M, Jönsson O, Wellinger A (2006) Biogas upgrading to vehicle fuel standards and grid injection. In: Task 37 - Energy from biogas and landfill gas. IEA Bioenergy, pp 1–34

    Google Scholar 

  • Petersson A, Wellinger A (2009) Biogas upgrading technologies-developments and innovations. In: Task 37 - Energy from biogas and landfill gas. IEA Bioenergy, pp 1–19

    Google Scholar 

  • Pomeroy RD (1957) Deodorizing gas streams by the use of microbiological growths. US patent 2.793.096

    Google Scholar 

  • Popat SC, Deshusses MA (2008) Biological removal of siloxanes from landfill and digester gases: opportunities and challenges. Environ Sci Technol 42:8510–8515

    Article  CAS  Google Scholar 

  • Purohit P, Kandpal TC (2007) Techno-economics of biogas-based water pumping in India: an attempt to internalize CO2 emissions mitigation and other economic benefits. Renew Sust Energ Rev 11:1208–1226

    Article  CAS  Google Scholar 

  • Rasi S, Veijanen A, Rintala J (2007) Trace compounds of biogas from different biogas production plants. Energy 32:1375–1380

    Article  CAS  Google Scholar 

  • Rene ER, Jin Y, Veiga MC, Kennes C (2009) Two-stage gas-phase bioreactor for the combined removal of hydrogen sulphide, methanol and α-pinene. Environ Technol 30:1261–1272

    Article  CAS  Google Scholar 

  • Rene ER, López ME, Veiga MC, Kennes C (2010) Steady- and transient-state operation of a two-stage bioreactor for the treatment of a gaseous mixture of hydrogen sulphide, methanol and α-pinene. J Chem Technol Biotechnol 85:336–348

    Article  CAS  Google Scholar 

  • Rossol D, Schmelz KG, Hohmann R (2003) Siloxane im Faulgas. KA-Abwasser Abfall 8:8

    Google Scholar 

  • Roubaud A, Favrat D (2005) Improving performances of a lean burn cogeneration biogas engine equipped with combustion prechambers. Fuel 84:2001–2007

    Article  CAS  Google Scholar 

  • Salomon KR, Lora EES (2009) Estimate of the electric energy generating potential for different sources of biogas in Brazil. Biomass Bioenerg 33:1101–1107

    Article  Google Scholar 

  • Schulte-Schulze Berndt A (2005) Biogas upgrading with pressure swing adsorption versus biogas reforming. In: Lens P, Westermann P, Haberbauer M, Moreno A (eds) Biofuels for fuel cells. IWA Publishing, London, pp 414–429

    Google Scholar 

  • Schweigkofler M, Niessner R (2001) Removal of siloxanes in biogases. J Hazard Mater 83:183–196

    Article  CAS  Google Scholar 

  • Sleat R, Mah R (1987) Hydrolytic bacteria. In: Chynoweth DP, Isaacson R (eds) Anaerobic digestion of biomass. Elsevier Applied Science Publishers, Ltd, New York, pp 15–33

    Google Scholar 

  • Soreanu G, Béland M, Falletta P, Edmonson K, Seto P (2008) Laboratory pilot scale study for H2S removal from biogas in an anoxic biotrickling filter. Water Sci Technol 57:201–207

    Article  CAS  Google Scholar 

  • Syed M, Soreanu G, Falletta P, Béland M (2006) Removal of hydrogen sulfide from gas streams using biological processes - a review. Can Biosyst Eng 48:1–14

    Google Scholar 

  • Trogisch S, Baaske WE (2004) Biogas powered fuel cells-case studies for their implementation. Trauner Verlag publishers, Linz

    Google Scholar 

  • Turk A, Sakalis E, Rago O, Karamitsos H (1992) Activated carbon systems for removal of light gases. Ann N Y Acad Sci 661:221–227

    Article  CAS  Google Scholar 

  • Urban W, Lohmann H, Gomez JIS (2009) Catalytically upgraded landfill gas as a cost-effective alternative for fuel cells. J Power Sources 193:359–366

    Article  CAS  Google Scholar 

  • van Groenestijn JW (2001) Bioscrubbers. In: Kennes C, Veiga MC (eds) Bioreactors for waste gas treatment. Kluwer Academic Publisher, Dordrecht, pp 133–162

    Chapter  Google Scholar 

  • Walsh JL, Smith MS, Ross CC, Harper SR (1988) Biogas utilization handbook. Georgia Tech Research Institute Publisher Atlanta, Georgia, p 133

    Google Scholar 

  • Wellinger A, Lindberg A. (2000) Biogas upgrading and utilization. Task 24: Energy from biological conversion of organic waste. IEA Bioenergy, pp 1–19

    Google Scholar 

  • Wheless E, Jeffrey P (2004). Siloxanes in landfill and digester gas update. In: 27th SWANA landfill Symposium, San Antonio, 22–25 March 2004

    Google Scholar 

Download references

Acknowledgements

The PhD research of M.E. López and our research on biofuels is being partly funded by the Spanish Ministry of Science and Innovation (Project: CTM2010-15796/TECNO). E. R. Rene would like to thank the Spanish Ministry of Science and Innovation (MICINN), for his post-doctoral (“Juan de La Cierva”) contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Kennes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

López, M.E., Rene, E.R., Veiga, M.C., Kennes, C. (2012). Biogas Technologies and Cleaning Techniques. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds) Environmental Chemistry for a Sustainable World. Environmental Chemistry for a Sustainable World. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2439-6_9

Download citation

Publish with us

Policies and ethics