Electrochemical Remediation Technologies for Waters Contaminated by Pharmaceutical Residues

Chapter

Abstract

The presence of pharmaceutical micropollutants in the environment has become of major concern in the last decades. Many electrochemical technologies are currently available for the remediation of waters contaminated by refractory organic pollutants. They are mainly defined as eco-friendly water treatments since the main reagent involved is a clean species, the electron. Recent reviews have focused on the destruction of pharmaceutical residues by the application of methods like ozonation and advanced oxidation processes. Here, we present an overview on electrochemical methods devised for the removal of pharmaceutical residues from both synthetic solutions and real pharmaceutical wastewaters. The fundamentals and experimental set-ups involved in different technologies such as electrocoagulation, anodic oxidation, electro-oxidation with active chlorine, electro-Fenton, photoelectro-Fenton, and photoelectrocatalysis, among others, are discussed. Progress on the promising solar photoelectro-Fenton process devised and further developed in our laboratory is especially highlighted and documented. The destruction of the individual pharmaceuticals and the abatement of total organic carbon or reduction of chemical oxygen demand allow the comparison between the different methods. In some cases, the routes for the complete degradation of the initial pollutants are discussed.

Keywords

Advanced oxidation processes Anodic oxidation Boron-doped diamond anode Carboxylic acids Electrochemical technologies Electrocoagulation Electro-Fenton Electro-oxidation with active chlorine Gas-diffusion electrode Hydrogen peroxide Hydroxyl radical Organic pollutants Pharmaceuticals Photoelectrocatalysis Photoelectro-Fenton Reaction pathway Solar-assisted processes Total organic carbon (TOC) Wastewater Water treatment 

References

  1. Anglada A, Urtiaga A, Ortiz I (2009) Contributions of electrochemical oxidation to waste-water treatment: fundamentals and review of applications. J Chem Technol Biotechnol 84:1747–1755. doi:10.1002/jctb.2214 CrossRefGoogle Scholar
  2. Babu BR, Venkatesan P, Kanimozhi R, Basha CA (2009) Removal of pharmaceuticals from wastewater by electrochemical oxidation using cylindrical flow reactor and optimization of treatment conditions. J Environ Sci Health A 44:985–994. doi:10.1080/10934520902996880 CrossRefGoogle Scholar
  3. Bergmann MEH, Rollin J, Iourtchouk T (2009) The occurrence of perchlorate during drinking water electrolysis using BDD anodes. Electrochim Acta 54:2102–2107. doi:10.1016/j.electacta.2008.09.040 CrossRefGoogle Scholar
  4. Bloecher C (2007) Elimination of micropollutants and hazardous substances at the source in the chemical and pharmaceutical industry. Water Sci Technol 56(12):119–123. doi:10.2166/wst.2007.820 CrossRefGoogle Scholar
  5. Boroski M, Rodrigues AC, Garcia JC, Sampaio LC, Nozaki J, Hioka N (2009) Combined electrocoagulation and TiO2 photoassisted treatment applied to wastewater effluents from pharmaceutical and cosmetic industries. J Hazard Mater 162:448–454. doi:10.1016/j.jhazmat.2008.05.062 CrossRefGoogle Scholar
  6. Boudreau J, Bejan D, Bunce NJ (2010a) Competition between electrochemical advanced oxidation and electrochemical hypochlorination of acetaminophen at boron-doped diamond and ruthenium dioxide based anodes. Can J Chem 88:418–425. doi:10.1139/V10-017 CrossRefGoogle Scholar
  7. Boudreau J, Bejan D, Li S, Bunce NJ (2010b) Competition between electrochemical advanced oxidation and electrochemical hypochlorination of sulfamethoxazole at a boron-doped diamond anode. Ind Eng Chem Res 49:2537–2542. doi:10.1021/ie900614d CrossRefGoogle Scholar
  8. Brillas E, Baños MA, Camps S, Arias C, Cabot PL, Garrido JA, Rodríguez RM (2004) Catalytic effect of Fe2+, Cu2+ and UVA light on the electrochemical degradation of nitrobenzene using an oxygen-diffusion cathode. New J Chem 28:314–322. doi:10.1039/b312445b CrossRefGoogle Scholar
  9. Brillas E, Sirés I, Arias C, Cabot PL, Centellas F, Rodríguez RM, Garrido JA (2005) Mineralization of paracetamol in aqueous medium by anodic oxidation with a boron-doped diamond electrode. Chemosphere 58:399–406. doi:10.1016/j.chemosphere.2004.09.028 CrossRefGoogle Scholar
  10. Brillas E, Garrido JA, Rodríguez RM, Arias C, Cabot PL, Centellas F (2008) Wastewaters by electrochemical advanced oxidation processes using a BDD anode and electrogenerated H2O2 with Fe(II) and UVA light as catalysts. Port Electrochim Acta 26:15–46CrossRefGoogle Scholar
  11. Brillas E, Sirés I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109:6570–6631. doi:10.1021/cr900136g CrossRefGoogle Scholar
  12. Brillas E, Garcia-Segura S, Skoumal M, Arias C (2010) Electrochemical incineration of diclofenac in neutral aqueous medium by anodic oxidation using Pt and boron-doped diamond anodes. Chemosphere 79:605–612. doi:10.1016/j.chemosphere.2010.03.004 CrossRefGoogle Scholar
  13. Carlesi Jara C, Fino D (2010) Cost optimization of the current density for electroxidation wastewater processes. Chem Eng J 160:497–502. doi:10.1016/j.cej.2010.03.060 CrossRefGoogle Scholar
  14. Carlesi Jara C, Fino D, Specchia V, Saracco G, Spinelli P (2007) Electrochemical removal of antibiotics from wastewaters. Appl Catal B- Environ 70:479–487. doi:10.1016/j.apcatb.2005.11.035 CrossRefGoogle Scholar
  15. Chen G (2004) Electrochemical technologies in wastewater treatment. Sep Purif Technol 38:11–41. doi:10.1016/j.seppur.2003.10.006 CrossRefGoogle Scholar
  16. Ciríaco L, Anjo C, Correia J, Pacheco M, Lopes A (2009) Electrochemical degradation of ibuprofen on Ti/Pt/PbO2 and Si/BDD electrodes. Electrochim Acta 54:1464–1472. doi:10.1016/j.electacta.2008.09.022 CrossRefGoogle Scholar
  17. Cleuvers M (2005) Initial risk assessment for three β-blockers found in the aquatic environment. Chemosphere 59:199–205. doi:10.1016/j.chemosphere.2004.11.090 CrossRefGoogle Scholar
  18. Comninellis Ch (1994) Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim Acta 39:1857–1862. doi:10.1016/0013-4686(94)85175-1 CrossRefGoogle Scholar
  19. Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107(suppl 6):907–938. doi:10.2307/3434573 CrossRefGoogle Scholar
  20. Deshpande A, Lokesh KS, Bejankiwar RS, Gowda TPH (2005) Electrochemical oxidation of pharmaceutical effluent using cast iron electrode. J Environ Sci Eng 47:21–24Google Scholar
  21. Deshpande AM, Satyanarayan S, Ramakant S (2009) Electrochemical pretreatment of wastewater from bulk drug manufacturing industry. J Environ Eng 135:716–719. doi:10.1061/(ASCE)EE.1943-7870.0000029 CrossRefGoogle Scholar
  22. Deshpande AM, Satyanarayan S, Ramakant S (2010) Treatment of high-strength pharmaceutical wastewater by electrocoagulation combined with anaerobic process. Water Sci Technol 61:463–472. doi:10.2166/wst.2010.831 CrossRefGoogle Scholar
  23. Escher BI, Pronk W, Suter MJF, Maurer M (2006) Monitoring the removal efficiency of pharmaceuticals and hormones in different treatment processes of source-separated urine with bioassays. Environ Sci Technol 40:5095–5101. doi:10.1021/es060598w CrossRefGoogle Scholar
  24. Esplugas S, Bila DM, Krause LGT, Dezotti M (2007) Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. J Hazard Mater 149:631–642. doi:10.1016/j.jhazmat.2007.07.073 CrossRefGoogle Scholar
  25. Feng Y, Wang C, Liu J, Zhang Z (2010) Electrochemical degradation of 17-alpha-ethinylestradiol (EE2) and estrogenic activity changes. J Environ Monit 12:404–408. doi:10.1039/b923495k CrossRefGoogle Scholar
  26. Garrido JA, Brillas E, Cabot PL, Centellas F, Arias C, Rodríguez RM (2007) Mineralization of drugs in aqueous medium by advanced oxidation processes. Port Electrochim Acta 25:19–41CrossRefGoogle Scholar
  27. Guinea E, Arias C, Cabot PL, Garrido JA, Rodríguez RM, Centellas F, Brillas E (2008) Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide. Water Res 42:499–511. doi:10.1016/j.watres.2007.07.046 CrossRefGoogle Scholar
  28. Guinea E, Brillas E, Centellas F, Cañizares P, Rodrigo MA, Sáez C (2009a) Oxidation of enrofloxacin with conductive-diamond electrochemical oxidation, ozonation and Fenton oxidation. A comparison. Water Res 43:2131–2138. doi:10.1016/j.watres.2009.02.025 CrossRefGoogle Scholar
  29. Guinea E, Centellas F, Brillas E, Cañizares P, Sáez C, Rodrigo MA (2009b) Electrocatalytic properties of diamond in the oxidation of a persistent pollutant. Appl Catal B- Environ 89:645–650. doi:10.1016/j.apcatb.2009.01.028 CrossRefGoogle Scholar
  30. Guinea E, Garrido JA, Rodríguez RM, Cabot PL, Arias C, Centellas F, Brillas E (2010) Degradation of the fluoroquinolone enrofloxacin by electrochemical advanced oxidation processes based on hydrogen peroxide electrogeneration. Electrochim Acta 55:2101–2115. doi:10.1016/j.electacta.2009.11.040 CrossRefGoogle Scholar
  31. Hirose J, Kondo F, Nakano T, Kobayashi T, Hiro N, Ando Y, Takenaka H, Sano K (2005) Inactivation of antineoplastics in clinical wastewater by electrolysis. Chemosphere 60:1018–1024. doi:10.1016/j.chemosphere.2005.01.024 CrossRefGoogle Scholar
  32. Ikehata K, Naghashkar NJ, El-Din MG (2006) Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone: Sci Eng 28:353–414. doi:10.1080/01919510600985937 CrossRefGoogle Scholar
  33. Isarain-Chávez E, Arias C, Cabot PL, Centellas F, Rodríguez RM, Garrido JA, Brillas E (2010) Mineralization of the drug β-blocker atenolol by electro-Fenton and photoelectro-Fenton using an air-diffusion cathode for H2O2 electrogeneration combined with a carbon-felt cathode for Fe2+ regeneration. Appl Catal B- Environ 96:361–369. doi:10.1016/j.apcatb.2010.02.033 CrossRefGoogle Scholar
  34. Jin Y, Zhang Y, Li W (2002) Experimental study on micro-electrolysis technology for pharmaceutical wastewater treatment. J Zhejiang Univ Sci 3:401–404. doi:10.1631/jzus.2002.0401 CrossRefGoogle Scholar
  35. Jones OAH, Voulvoulis N, Lester JN (2005) Human pharmaceuticals in wastewater treatment processes. Crit Rev Environ Sci Technol 35:401–427. doi:10.1080/10643380590956966 CrossRefGoogle Scholar
  36. Khetan SK, Collins TJ (2007) Human pharmaceuticals in the aquatic environment: a challenge to green chemistry. Chem Rev 107:2319–2364. doi:10.1021/cr020441w CrossRefGoogle Scholar
  37. Klavarioti M, Mantzavinos D, Kassinos D (2009) Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Int 35:402–417. doi:10.1016/j.envint.2008.07.009 CrossRefGoogle Scholar
  38. Kobayashi T, Hirose J, Sano K, Hiro N, Ijiri Y, Takiuchi H, Tamai H, Takenaka H, Tanaka K, Nakano T (2008) Evaluation of an electrolysis apparatus for inactivating antineoplastics in clinical wastewater. Chemosphere 72:659–665. doi:10.1016/j.chemosphere.2008.02.020 CrossRefGoogle Scholar
  39. Krause H, Schweiger B, Schuhmacher J, Scholl S, Steinfeld U (2009) Degradation of the endocrine disrupting chemicals (EDCs) carbamazepine, clofibric acid, and iopromide by corona discharge over water. Chemosphere 75:163–168. doi:10.1016/j.chemosphere.2008.12.020 CrossRefGoogle Scholar
  40. Kümmerer K (2009) The presence of pharmaceuticals in the environment due to human use - present knowledge and future challenges. J Environ Manage 90:2354–2366. doi:10.1016/j.jenvman.2009.01.023 CrossRefGoogle Scholar
  41. Lazarova Z, Spendlingwimmer R (2008) Treatment of yellow water by membrane separations and advanced oxidation methods. Water Sci Technol 58:419–426. doi:10.2166/wst.2008.667 CrossRefGoogle Scholar
  42. Li S, Bejan D, McDowell MS, Bunce NJ (2008) Mixed first and zero order kinetics in the electrooxidation of sulfamethoxazole at a boron-doped diamond (BDD) anode. J Appl Electrochem 38:151–159. doi:10.1007/s10800-007-9413-2 CrossRefGoogle Scholar
  43. Liu Y, Gan X, Zhou B, Xiong B, Li J, Dong C, Bai J, Cai W (2009a) Photoelectrocatalytic degradation of tetracycline by highly effective TiO2 nanopore arrays electrode. J Hazard Mater 171:678–683. doi:10.1016/j.jhazmat.2009.06.054 CrossRefGoogle Scholar
  44. Liu Y, Zhou B, Li J, Gan X, Bai J, Cai W (2009b) Preparation of short, robust and highly ordered TiO2 nanotube arrays and their applications as electrode. Appl Catal B- Environ 92:326–332. doi:10.1016/j.apcatb.2009.08.011 CrossRefGoogle Scholar
  45. Marselli B, Garcia-Gomez J, Michaud PA, Rodrigo MA, Comninellis Ch (2003) Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. J Electrochem Soc 150:D79–D83. doi:10.1149/1.1553790 CrossRefGoogle Scholar
  46. Martínez-Huitle CA, Brillas E (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl Catal B- Environ 87:105–145. doi:10.1016/j.apcatb.2008.09.017 CrossRefGoogle Scholar
  47. Menapace HM, Diaz N, Weiss S (2008) Electrochemical treatment of pharmaceutical wastewater by combining anodic oxidation with ozonation. J Environ Sci Health A 43:961–968. doi:10.1080/10934520801974558 CrossRefGoogle Scholar
  48. Murugananthan M, Yoshihara S, Rakuma T, Uehara N, Shirakashi T (2007) Electrochemical degradation of 17β-estradiol (E2) at boron-doped diamond (Si/BDD) thin film electrode. Electrochim Acta 52:3242–3249. doi:10.1016/j.electacta.2006.09.073 CrossRefGoogle Scholar
  49. Neafsey K, Zeng X, Lemley AT (2010) Degradation of sulfonamides in aqueous solution by membrane anodic Fenton treatment. J Agric Food Chem 58:1068–1076. doi:10.1021/jf904066a CrossRefGoogle Scholar
  50. Oturan MA, Brillas E (2007) Electrochemical advanced oxidation processes (EAOPs) for environmental applications. Port Electrochim Acta 25:1–18CrossRefGoogle Scholar
  51. Oturan MA, Pinson J, Bizot J, Deprez D, Terlain B (1992a) Reaction of inflammation inhibitors with chemically and electrochemically generated hydroxyl radicals. J Electroanal Chem 334:103–109. doi:10.1016/0022-0728(92)80563-JCrossRefGoogle Scholar
  52. Oturan MA, Pinson J, Deprez D, Terlain B (1992b) Polyhydroxylation of salicylic acid by electrochemically generated OH radicals. New J Chem 16:705–710Google Scholar
  53. Oturan MA, Pinson J, Oturan N, Deprez D (1999a) Hydroxylation of aromatic drugs by the electro-Fenton method. Formation and identification of the metabolites of riluzole. New J Chem 23:793–794. doi:10.1039/A903791H CrossRefGoogle Scholar
  54. Oturan MA, Pinson J, Traikia M, Deprez D (1999b) The electrochemical oxidation of riluzole, a neuroprotective drug: comparison with the reaction with oxygen derived radicals. J Chem Soc Perkin Trans 2 3:619–622. doi:10.1039/a807354fGoogle Scholar
  55. Panizza M, Cerisola G (2009) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109:6541–6569. doi:10.1021/cr9001319 CrossRefGoogle Scholar
  56. Pauwels B, Verstraete W (2006) The treatment of hospital wastewater: an appraisal. J Water Health 4:405–416. doi:10.2166/wh.2006.025 Google Scholar
  57. Pauwels B, Deconinck S, Verstraete W (2006) Electrolytic removal of 17α-ethinylestradiol (EE2) in water streams. J Chem Technol Biotechnol 81:1338–1343. doi:10.1002/jctb.1515 CrossRefGoogle Scholar
  58. Perez G, Fernandez-Alba AR, Urtiaga AM, Ortiz I (2010) Electro-oxidation of reverse osmosis concentrates generated in tertiary water treatment. Water Res 44:2763–2772. doi:10.1016/j.watres.2010.02.017 CrossRefGoogle Scholar
  59. Pignatello JJ, Oliveros E, MacKay A (2006) Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit Rev Environ Sci Technol 36:1–84. doi:10.1080/10643380500326564 CrossRefGoogle Scholar
  60. Rahman MF, Yanful EK, Jasim SY (2009) Occurrences of endocrine disrupting compounds and pharmaceuticals in the aquatic environment and their removal from drinking water: challenges in the context of the developing world. Desalination 248:578–585. doi:10.1016/j.desal.2008.05.105 CrossRefGoogle Scholar
  61. Rossi A, Alves VA, Da Silva LA, Oliveira MA, Assis DOS, Santos FA, De Miranda RRS (2009) Electrooxidation and inhibition of the antibacterial activity of oxytetracycline hydrochloride using a RuO2 electrode. J Appl Electrochem 39:329–337. doi:10.1007/s10800-008-9676-2 CrossRefGoogle Scholar
  62. Safarzadeh-Amiri A, Bolton JR, Cater SR (1997) Ferrioxalate-mediated photodegradation of organic pollutants in contaminated water. Water Res 31:787–798. doi:10.1016/S0043-1354(96)00373-9 CrossRefGoogle Scholar
  63. Sirés I, Arias C, Cabot PL, Centellas F, Rodríguez RM, Garrido JA, Brillas E (2004) Paracetamol mineralization by advanced electrochemical oxidation processes for wastewater treatment. Environ Chem 1:26–28. doi:10.1071/EN04018 CrossRefGoogle Scholar
  64. Sirés I, Cabot PL, Centellas F, Garrido JA, Rodríguez RM, Arias C, Brillas E (2006a) Electrochemical degradation of clofibric acid in water by anodic oxidation. Comparative study with platinum and boron-doped diamond electrodes. Electrochim Acta 52:75–85. doi:10.1016/j.electacta.2006.03.075 CrossRefGoogle Scholar
  65. Sirés I, Garrido JA, Rodríguez RM, Cabot PL, Centellas F, Arias C, Brillas E (2006b) Electrochemical degradation of paracetamol from water by catalytic action of Fe2+, Cu2+, and UVA light on electrogenerated hydrogen peroxide. J Electrochem Soc 153:D1–D9. doi:10.1149/1.2130568 CrossRefGoogle Scholar
  66. Sirés I, Arias C, Cabot PL, Centellas F, Garrido JA, Rodríguez RM, Brillas E (2007a) Degradation of clofibric acid in acidic aqueous medium by electro-Fenton and photoelectro-Fenton. Chemosphere 66:1660–1669. doi:10.1016/j.chemosphere.2006.07.039 CrossRefGoogle Scholar
  67. Sirés I, Centellas F, Garrido JA, Rodríguez RM, Arias C, Cabot PL, Brillas E (2007b) Mineralization of clofibric acid by electrochemical advanced oxidation processes using a boron-doped diamond anode and Fe2+ and UVA light as catalysts. Appl Catal B- Environ 72:373–381. doi:10.1016/j.apcatb.2006.12.002 CrossRefGoogle Scholar
  68. Sirés I, Garrido JA, Rodríguez RM, Brillas E, Oturan N, Oturan MA (2007c) Catalytic behavior of the Fe3+/Fe2+ system in the electro-Fenton degradation of the antimicrobial chlorophene. Appl Catal B- Environ 72:382–394. doi:10.1016/j.apcatb.2006.11.016 CrossRefGoogle Scholar
  69. Sirés I, Oturan N, Oturan MA, Rodríguez RM, Garrido JA, Brillas E (2007d) Electro-Fenton degradation of antimicrobials triclosan and triclocarban. Electrochim Acta 52:5493–5503. doi:10.1016/j.electacta.2007.03.011 CrossRefGoogle Scholar
  70. Sirés I, Oturan N, Oturan MA (2010) Electrochemical degradation of β-blockers. Studies on single and multicomponent synthetic aqueous solutions. Water Res 44:3109–3120. doi:10.1016/j.watres.2010.03.005 CrossRefGoogle Scholar
  71. Skoumal M, Arias C, Cabot PL, Centellas F, Garrido JA, Rodríguez RM, Brillas E (2008) Mineralization of the biocide chloroxylenol by electrochemical advanced oxidation processes. Chemosphere 71:1718–1729. doi:10.1016/j.chemosphere.2007.12.029 CrossRefGoogle Scholar
  72. Skoumal M, Rodríguez RM, Cabot PL, Centellas F, Garrido JA, Arias C, Brillas E (2009) Electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton degradation of the drug ibuprofen in acid aqueous medium using platinum and boron-doped diamond anodes. Electrochim Acta 54:2077–2085. doi:10.1016/j.electacta.2008.07.014 CrossRefGoogle Scholar
  73. Suárez S, Carballa M, Omil F, Lema JM (2008) How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters? Rev Environ Sci Biotechnol 7:125–138. doi:10.1007/s11157-008-9130-2 CrossRefGoogle Scholar
  74. Vedenyapina MD, Eremicheva Y, Pavlov VA, Vedenyapin AA (2008) Electrochemical degradation of tetracycline. Russ J Appl Chem 81:800–802. doi:10.1134/S1070427208050145 CrossRefGoogle Scholar
  75. Wang K, Liu S, Zhang Q, He Y (2009) Pharmaceutical wastewater treatment by internal micro-electrolysis-coagulation, biological treatment and activated carbon sorption. Environ Technol 30:1469–1474. doi:10.1080/09593330903229164 CrossRefGoogle Scholar
  76. Waterston K, Wang JW, Bejan D, Bunce NJ (2006) Electrochemical waste water treatment: electrooxidation of acetaminophen. J Appl Electrochem 36:227–232. doi:10.1007/s10800-005-9049-z CrossRefGoogle Scholar
  77. Weichgrebe D, Danilova E, Rosenwinkel KH, Vedenjapin AA, Baturova M (2004) Electrochemical oxidation of drug residues in water by the example of tetracycline, gentamicin and aspirin. Water Sci Technol 49(4):201–206Google Scholar
  78. Yoshihara S, Murugananthan M (2009) Decomposition of various endocrine-disrupting chemicals at boron-doped diamond electrode. Electrochim Acta 54:2031–2038. doi:10.1016/j.electacta.2008.07.006 CrossRefGoogle Scholar
  79. Zhang H, Liu F, Wu X, Zhang J, Zhang D (2009) Degradation of tetracycline in aqueous medium by electrochemical method. Asia Pac J Chem Eng 4:568–573. doi:10.1002/apj.286 CrossRefGoogle Scholar
  80. Zhao X, Hou Y, Liu H, Qiang Z, Qu J (2009a) Electro-oxidation of diclofenac at boron doped diamond: kinetics and mechanism. Electrochim Acta 54:4172–4179. doi:10.1016/j.electacta.2009.02.059 CrossRefGoogle Scholar
  81. Zhao X, Qu J, Liu H, Qiang Z, Liu R, Hu C (2009b) Photoelectrochemical degradation of anti-inflammatory pharmaceuticals at Bi2MoO6-boron-doped diamond hybrid electrode under visible light irradiation. Appl Catal B- Environ 91:539–545. doi:10.1016/j.apcatb.2009.06.025 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Laboratori d’Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de QuímicaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations