Skip to main content

Bioremediation of Arsenic in Contaminated Terrestrial and Aquatic Environments

  • Chapter
  • First Online:

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW))

Abstract

The name Arsenic is derived from the Greek word arsenikon, meaning potent. This element occurs in the ecosystem in different oxidation states of which As(III) and As(V) are most common to humans, animals, plant species. As is present in drinking water and soil from natural sources as well as a pollutant from agricultural and industrial processes. Differences in arsenic uptake by different plant species is controlled by many factors such as root surface area, root exudates, and rate of evapotranspiration. Some plant species have high affinity to accumulate arsenic in tissues above ground. Hyperaccumulator plants have a threshold arsenic content above 1,000 μg g−1 DM. We review bioremediation studies with especial emphasis on biosorption research on different arsenic species, plants and their biomass, agricultural and industry wastes, as well as the biomass of some fungi species. Bioremediation is considered as an alternative technique for the removal of As in groundwater. One of the popular methods among bioremediation techniques, phytoremediation uses living plants to remove arsenic from the environment or to render it less toxic, in bioaccumulation processes. Phytoremediation techniques often do not take into account the biosorption processes of living plants and plant litter. In biosorption techniques, contaminants can be removed by a biological substrate as a sorbent such as bacteria, fungi, algae or vascular plants. Bioremediation assures in situ treatment of polluted soils. Biosorption characteristics, equilibrium and kinetics of different biosorbents have also been addressed here. Evaluation of the current literature suggests that arsenic bioavailability and molecular level phytoremediation processes in bioremediation are crucial for designing phytoremediation technologies with improved, predictable remedial success.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abedin MJ, Cresser MS, Meharg AA, Feldmann J, Cotter-Howells J (2002) Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environ Sci Technol 36:962–968

    Article  CAS  Google Scholar 

  • Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS (2004) Role of assisted natural remediation in environmental clean up. Geoderma 122:121–142

    Article  CAS  Google Scholar 

  • Agely AA, Sylvia DM, Ma LQ (2005) Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese brake fern (Pteris vittata L.). J Environ Qual 34:2181–2186

    Article  CAS  Google Scholar 

  • Ahmann D, Krumholz LR, Hemond HF, Lovley DR, Morel FMM (1997) Microbial mobilization of arsenic from sediments of the Aberjona Watershed. Environ Sci Technol 31(10):2923–2930

    Article  CAS  Google Scholar 

  • Aksu Z, Sag Y, Kutsal T (1992) The biosorption of Cu (II) by C. Vulgaris and Z. ramigera. Environ Technol 13:579–586

    Article  CAS  Google Scholar 

  • Aksu Z, Kutsal T, Giia S, Haeiosmanoglu N, Gholaminejad M (1991) Investigation of biosorption of Cu (It), Ni (II) and Cr (VI) ions to activated sludge bacteria. Environ Technol 12:915–921

    Article  CAS  Google Scholar 

  • Alarcon-Herrera MT, Nunez-Montoya OG, Melgoza-Castillo A, Royo-Marquez MH, Almeida FAR (2009) Potential use of sedges (Cyperaceae) in arsenic phytoremediation. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in groundwaters of Latin America. CRC Press, Boca Raton, pp 649–655

    Google Scholar 

  • Alexander M (1999) Biodegradation and bioremediation, 2nd edn. Academic, San Diego

    Google Scholar 

  • Anawar HM, Anawar Garcia-Sanchez A, Tari Kul Alam M, Majibur Rahman M (2008) Phytofiltration of water polluted with arsenic and heavy metals. Int J Environ Pollut 33(2–3):292–312

    Article  CAS  Google Scholar 

  • Andrews P, Cullen WR, Polishchuk E (2000) Arsenic and antimony biomethlyation by Scopulariopsis brevicaulis: interaction of arsenic and antimony compounds. Environ Sci Technol 34(11):2249–2253

    Article  CAS  Google Scholar 

  • Apiratikul R, Pavasant P (2008) Batch and column studies of biosorption of heavy metals by Caulerpa lentillifera. Bioresour Technol 99:2766–2777

    Article  CAS  Google Scholar 

  • Armstrong J, Armstrong W, Bectett PM (1992) Phragmites australis: venturi- and humidity-induced pressure flows enhance rhizome aeration and rhizosphere oxidation. New Phytol 120:107–207

    Article  Google Scholar 

  • Asher CJ, Reay PF (1979) Arsenic uptake by barley seedlings. Aust J Plant Physiol 6:459–466

    Article  CAS  Google Scholar 

  • ATSDR (2007) Toxicological profile for arsenic. Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, 500 pp

    Google Scholar 

  • Bailey SE, Olin TJ, Brick RM, Adrian DD (1999) A review of potentially low-cost sorbents for heavy metals. Water Res 33(11):2469–2479

    Article  CAS  Google Scholar 

  • Baker AJM (1981) Accumulator and excluders – strategies in response of plant to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • Baker AJM, Whiting SN (2002) In search of the holy grail—a further step in understanding metal hyperaccumulation? New Phytol 155:1–7

    Article  Google Scholar 

  • Baral SS, Das SN, Rath P (2006) Hexavalent chromium removal from aqueous solution by adsorption on treated sawdust. Biochem Eng J31:216–222

    Article  CAS  Google Scholar 

  • Barrachina AC, Carbonell FB, Beneyto JM (1995) Arsenic uptake, distribution, and accumulation in tomato plants-effect of arsenite on plant-growth and yield. J Plant Nutr 18:1237–1250

    Article  Google Scholar 

  • Berg B, McClaugherty C (eds) (2003) Plant litter, decomposition, humus formation, carbor ­sequestration. Springer, Heidelberg, p 286

    Google Scholar 

  • Bhattacharya P, Chatterjee D, Jacks G (1997) Occurrence of as-contaminated groundwater in ­alluvial aquifers from delta plains, Eastern India: options for safe drinking water. Water Res Dev 13:79–92

    Article  Google Scholar 

  • Bhattacharya P, Frisbie SH, Smith E, Naidu R, Jacks G, Sarkar B (2002) Chapter 6. Arsenic in the environment: a global perspective. In: Sarkar B (ed) Heavy metals in the environment. Marcel Dekker, Inc., New York, pp 147–215

    Google Scholar 

  • Bhattacharya P, Jacks G (2000) Arsenic contamination in groundwater of the sedimentary aquifers in the Bengal Delta Plains: a review. In: Bhattacharya P, Welch AH (eds) Arsenic in groundwater of sedimentary aquifers. Pre-Congress Workshop Abstract Volume, 31st International Geological Congress, Rio de Janeiro, Brazil, pp 19–21

    Google Scholar 

  • Blute NK, Brabander DJ, Hemond HF, Sutton SR (2004) Arsenic sequestration by ferric iron plaque on cattail roots. Environ Sci Technol 38(22):6074–6077

    Article  CAS  Google Scholar 

  • Boisson J, Mench M, Vangronsveld J, Kopponen P, De Koe T (1999) Immobilization of trace metals and arsenic by different soil additives: evaluation by means of chemical extractions. Commun Soil Sci Plant Anal 30:365

    Article  CAS  Google Scholar 

  • Bondada BR, Ma LQ (2003) Tolerance of heavy metals in vascular plants: arsenic hyperaccumulation by Chinese brake fern (Pteris vittata L.). In: Chandra S, Srivastava M (eds) Pteridology in the new millennium. Kluwer Academic, Dordrecht, pp 397–420

    Chapter  Google Scholar 

  • Bondada BR, Underhill RS, Ma LQ, Guyodo Y, Mikhaylova A, Davidson MR, Duran RS (2007) Localization, and speciation of arsenic in the hyperaccumulating fern Pteris vittata L. In: Bhattacharaya P, Mukherjee AB, Bundschuh J, Zevenhoven R, Loeppert RH (eds) Arsenic in soil and groundwater environment. Trace metals and other contaminants in the environment, vol 9., pp 299–314

    Google Scholar 

  • Brierley CL (1990) Bioremediation of metal-contaminated surface and groundwaters. Geomicrobiol J 8:201–223

    Article  CAS  Google Scholar 

  • Brix H (1993) Macrophyte-mediated oxygen transfer in wetlands: transport mechanisms and rates. In: Moshiri GA (ed) Constructed wetland for water quality improvement. CRC Press, Boca Raton, pp 123–152

    Google Scholar 

  • Brooks RR, Lee J, Reeves RD, Jaffre T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57

    Article  CAS  Google Scholar 

  • Brown SL, Sprenger M, Maxemchuk A, Compton H (2005) Ecosystem function in alluvial tailings after biosolids and lime application. J Environ Qual 34:1–6

    Article  Google Scholar 

  • Bundschuh J, García ME, Birkle P, Cumbal LH, Bhattacharya P, Matschullat J (2009) Occurrence of health effects and remediation of arsenic in groundwaters of Latin America. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in grounwaters of Latin America. CRC Press/Taylor & Francis Group, Boca Raton/London, pp 3–15

    Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  CAS  Google Scholar 

  • Bunnaul P, Saejen R, Arrykul S, Kooptarnond K (1999) Study on the preparation of activated carbon using for arsenic removal and its adsorption characteristics. In: Proceedings of FEISEAP’99 Inter-Regional Symposium on Sustainable Development (ISSD) Felix Kanchanaburi-Swissotel-River Kwai, Thailand, 18–20 May

    Article  CAS  Google Scholar 

  • Cabral JPS (1992) Selective binding of metal ions to Pseudomonas syringae cells. Microbios 71:47–53

    CAS  Google Scholar 

  • Caille N, Zhao FJ, McGrath SP (2004) Comparison of root absorption, translocation and tolerance of arsenic in the hyperaccumulator Pteris vittata and the nonhyperaccumulator Pteris tremula. New Phytol 165:755–761

    Article  CAS  Google Scholar 

  • Čerňanský S, Urík M, Ševc J, Khun M (2007) Biosorption and biovolatilization of arsenic by heat-resistant fungi. Environ Sci Pollut Res 14(Special Issue 1):31–35

    Article  CAS  Google Scholar 

  • Chandra KS, Kamala CT, Chary NS, Mukherjee AB (2007) Arsenic accumulation by Thalinum cuneifolium – application for phytoremediation of arsenic-contaminated soils of Patancheru, Hyderabad, India. In: Bhattacharaya P, Mukherjee AB, Bundschuh B, Zevenhoven R, Loeppert RH (eds) Arsenic in groundwater and environment: trace metals and other contaminants in the environment, vol 9. Elsevier, Amsterdam, pp 315–338

    Google Scholar 

  • Chen C-C, Chung Y-C (2006) Arsenic removal using a biopolymer chitosan sorbent. J Environ Sci Health Part A Toxic/Hazard Subst Environ Eng 41(4):645–658

    Article  CAS  Google Scholar 

  • Chowdhury K, Biswas BK, Chowdhury TR, Samanta G, Mandal K, Basu C, Chanda CR, Lodh D, Saha KC, Mukherjee SK (2000) Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environ Health Perspect 108:393–397

    Article  CAS  Google Scholar 

  • Clemente R, Almela C, Pilar Bernal M (2006) A remediation strategy based on active phyroremediation followed by natural attenuation in a soil contaminated by pyrite waste. Environ Pollut 143:397–406

    Article  CAS  Google Scholar 

  • Conrad K (2008) Correlation between the distribution of lignin and pectin and distribution of sorbed metal ions (lead and zinc) on coir (Cocos nucifera L.). Bioresour Technol 99:8476–8484

    Article  CAS  Google Scholar 

  • Conrad K, Hansen HCB (2007) Sorption of zinc and lead on coir. Bioresour Technol 98:89–97

    Article  CAS  Google Scholar 

  • Cotoras D, Viedma P, Pimentel J (1993) Biosorption of metal ions by attached bacterial cells in a packed-bed bioreactor. In: Torma A, Apel M, Brierley C (eds) Biohydrometalurgical technologies, vol 2, The minerals. Metals & Materials Society, Warrandale, pp 103–110

    Google Scholar 

  • Cox DP, Alexander D (1973) Effect of phosphate and other anions on trimethylarsine formation by Candida humicola. Appl Microbiol 25(3):408–413

    CAS  Google Scholar 

  • Creger TL, Peryea FJ (1994) Phosphate fertilizer enhances arsenic uptake by apricot liners grown in lead-arsenate-enriched soil. Hortic Sci 29:88–92

    CAS  Google Scholar 

  • Cunningham SD, Berti WR (1993) Remediation of contaminated soils with green plants: an overview. Vitro Cell Dev Biol 29:207–212

    Article  Google Scholar 

  • Dambies L, Vincent T, Guibal E (2002) Treatment of arsenic containing solution using chitosan derivatives: uptake mechanism and sorption performances. Water Res 36:3699–3710

    Article  CAS  Google Scholar 

  • Dang VBH, Doan HD, Dang-Vu T, Lohi A (2009) Equilibrium and kinetics of biosorption of cadmium (II) and copper (II) ions by wheat straw. Bioresour Technol 100(1):211–219

    Article  CAS  Google Scholar 

  • Del Rio M, Font R, Conceptión A, Vélez D, Montoro R, de Bailón AH (2002) Heavy metals and arsenic uptake by wild vegetation in the Guadiamar river area after the toxic spill of the Azalcóllar mine. J Biotechnol 98:125–137

    Article  Google Scholar 

  • Dermatas D, Moon DH, Menounou N, Meng X, Hires R (2004) An evaluation of arsenic release from monolithic solids using a modified semi-dynamic leaching test. J Hazard Mater 116:25–38

    Article  CAS  Google Scholar 

  • Djeribi R, Hamdaoui O (2008) Sorption of copper(II) from aqueous solutions by cedar sawdust and crushed brick. Desalination 225:95–112

    Article  CAS  Google Scholar 

  • Eisler R, Zaroogian GE, Hennekey RJ (1972) Cadmium uptake by marine organisms. J Fish Res Board Can 29:1367–1969

    Article  CAS  Google Scholar 

  • Ercole C, Veglio F, Toro L, Ficara G, Lepidi A (1994) Immobilisation of microbial cells for metal adsorption and desorption. In: Mineral bioprocessing I. Snowbird, Utah

    Google Scholar 

  • Ernst WHO (2005) Phytoextraction of mine wastes – options and impossiblities. Cheme der Erde 65(51):29–42

    Article  CAS  Google Scholar 

  • Faisal M, Hasnain (2005) Chromate resistant Bacillus cereus aguments sunflower growth by reducing toxicity of Cr (VI). J Plant Biol 48(2):187–194

    Article  CAS  Google Scholar 

  • Fayiga AO, Ma LQ (2006) Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata. Sci Total Environ 359(1–3):17–25

    Article  CAS  Google Scholar 

  • Fayiga AO Ma LQ, Santoa J, Rathinasabapathi B, Stamps B, Littell RC, (2005) Effects of arsenic species and concentrations on arsenic accumulation by different fern species in a hydroponic system. Int J Phytoremediation 7:231–240

    Article  CAS  Google Scholar 

  • Febrianto J, Kosasih Sunarso J, Ju Y-H, Indraswati N, Ismadji S (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater 162(2–3):616–645

    Article  CAS  Google Scholar 

  • Fergusson JE (1990) The heavy elements: chemistry, environmental impact and health effects. Pergamon Press, Oxford, 614 pp

    Google Scholar 

  • Fitz WJ, Wenzel WW (2002) Arsenic transformations in the soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation. J Biotechnol 99(3):259–278

    Article  CAS  Google Scholar 

  • Fourest E, Roux JC (1992) Heavy metal biosorption by fungal mycelial by-products: mechanism and influence of pH. Appl Microbiol Biotechnol 37:399–403

    Article  CAS  Google Scholar 

  • Frankenberger WT Jr, Arshad M (2002) Volatilisation of arsenic. In: Frankenberger WT Jr (ed) Environmental chemistry of arsenic. Marcel Dekker, New York, pp 363–380

    Google Scholar 

  • Franseconi K, Visootiviseth P, Sridokchan W, Goessler W (2002) Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomonanos: a potential phytoremediator of arsenic-contaminated soils. Sci Total Environ 284:27–35

    Article  Google Scholar 

  • Frence CJ, Dickinson NM, Putwain PD (2006) Woody biomass phytoremediation of contaminated brownfield land. Environ Pollut 141:387–395

    Article  CAS  Google Scholar 

  • Freundlich HMF (1906) Über die adsorption in Losungen. Z Phys Chem 57:385–470

    CAS  Google Scholar 

  • Galun M, Galun E, Siegel BZ, Keller P, Lehr H, Siegel SM (1987) Removal of metal ions from aqueous solutions by Penicillium biomass: kinetic and uptake parameters. Water Air Soil Pollut 33:359–371

    Article  CAS  Google Scholar 

  • Ghimire KN, Inoue K, Makino K, Miyajima T (2002) Adsorption removal of arsenic using orange juice residue. Sep Sci Technol 37(12):2785–2799

    Article  CAS  Google Scholar 

  • Ghimire KN, Inoue K, Yamaguchi H, Makino K, Miyajima T (2003) Adsorptive separation of arsenate and arsenite anions from aqueous medium by using orange waste. Water Res 37(20):4945–4953

    Article  CAS  Google Scholar 

  • Ghosh M, Singh SP (2005) A rewiev on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3(1):1–18

    Article  Google Scholar 

  • Gobas FAPC, Wilcockson JB, Russell RW, Haffner GD (1999) Mechanisms of biomagnification in fish under laboratory and field conditions. Environ Sci Technol 33(1):133–141

    Article  CAS  Google Scholar 

  • Gonzaga SMI, Santos JAG, Ma LQ (2006) Arsenic phytoextraction and hyperaccumulation by fern species. Sci Agric 63(1):90

    Article  CAS  Google Scholar 

  • Greger M (2005) Influence of willow (Salix viminalis L.) roots on soil metal chemistry: effects of clones with varying metal uptake potential. In: Huang PM, Gobran GR (eds) Biogeochemistry of trace elements in the rhizosphere. Elsevier, Amsterdam, pp 301–312

    Chapter  Google Scholar 

  • Greger M (2008) Trace elements and radionuclides in edible plants. In: Prasad MNV (ed) Trace elements as contaminants and nutrients: consequences in ecosystems and human health. Wiley, New York, pp 121–136

    Chapter  Google Scholar 

  • Gustafsson JP, Bhattacharya P (2008) Geochemical modelling of arsenic adsorption to oxide surfaces. In: Bhattacharya P, Mukherjee AB, Bundschuh J, Zevenhoven R, Loeppert RH (eds) Arsenic in soil and groundwater environment: biogeochemical interaction, health effects and remediation. Trace metals and other contaminants in environment, vol 9. Elsevier B.V., Amsterdam, pp 159–206

    Google Scholar 

  • Hansen HK, Ribeiro A, Mateus M (2006) Biosorption of arsenic(V) with Lessonia nigrescens. Min Eng 19:486–490

    Article  CAS  Google Scholar 

  • Haque N, Mokgalaka NS, Peralta-Videa JR, Gardea-Torresdey JL (2009) Phytoremediation of arsenic by sorghum (Sorghum biocolr) under hydroponics. In: Bundschuh J, Armienta MA, Birkle P, Bhattacharya P, Matschullat J, Mukherjee AB (eds) Natural arsenic in groundwaters of Latin America. CRC Press, Boca Raton, p 643

    Google Scholar 

  • Ho Y (2006) Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods. Water Res 40:119–125

    Article  CAS  Google Scholar 

  • Hoffman T, Kutter C, Santamaria JM (2004) Capacity of Salvinia minima Baker to tolerate and accumulate As and Pb. Eng Life Sci 4(1):61–65

    Article  CAS  Google Scholar 

  • Huq SMI, Naidu R (2005) Arsenic in groundwater and contamination of food chain: Bangladesh Scenario. In: Bundschuh P, Battacharya P, Chandrasekharam D (eds) Natural arsenic in groundwater: occurrence, remediation and management. Taylor & Francis Group Publishers, London, pp 95–101

    Google Scholar 

  • Huysmans KD, Frankenberger WT (1991) Evolution of trimethylarsine by a Penicillium sp. isolated from agricultural evaporation pond water. Sci Total Environ 105:13–28

    Article  CAS  Google Scholar 

  • ITRC (2009) Phytotechnology technical and regulatory guidance document. In: Technical/regulatory guidelines. http://www.itrcweb.org/Documents/PHYTO-3.pdf

  • IUPAC (1996) Glossary of terms relating to pesticides. Pure Appl Chem 68(5):1167–1193

    Google Scholar 

  • Jacks G, Bhattacharya P (1998) Arsenic contamination in the environment due to the use of CCA-wood preservatives. Arsenic in wood preservatives, part I, Kemi report 3/98. pp 7–75

    Google Scholar 

  • Jing C, Liu S, Patel M, Meng X (2005) Arsenic leachability in water treatment adsorbents. Environ Sci Technol 39:5481–5487

    Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements ion soils and plants, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Kamala CT, Chu KH, Chary NS, Pandey PK, Ramesh SL, Sastry ARK, Sekhar KC (2005) Removal of Arsenic (III) from Aqueous Solutions Using Fresh and Immobilized Plant Biomass. Water Res, 39:2815–2826

    Google Scholar 

  • Kid P, Barceló J, Bernal MP, Navari-Izzo F, Poschenrieder C, Shilev S, Clemente R, Monterroso C (2009) Trace element behaviour at the root-soil interface: implications in phytoremediation. Environ Exp Bot 67:243–259

    Article  CAS  Google Scholar 

  • Kloke A, Sauerbeck DR, Vetter H (1994) In: Nriagu JO (ed) Changing metal cycles and human health. Springer, Berlin, p 113

    Google Scholar 

  • Knudson JA, Meikle T, DeLuca TH (2003) Role of mycorrhizal fungi and phosphorus in the arsenic tolerance of basin wildrye. J Environ Qual 32:2001–2006

    Article  CAS  Google Scholar 

  • Koivula MP, Kujala KK, Rönkkömäki H, Mäkelä M (2009) Sorption of Pb(II), Cr(III), Cu(II), As(III) to peat, and utilization of the sorption properties in industrial waste landfill hydraulic barrier layers. J Hazad Mater 164(1):345–352

    Article  CAS  Google Scholar 

  • Kramer U (2000) Cadmium for all meals – plants with an unusual appetite. New Phytol 145:1–5

    Article  Google Scholar 

  • Kratochvil D, Volesky B (1998) Advances in the biosorption of heavy metals. Trends Biotechnol 16:291–300

    Article  CAS  Google Scholar 

  • Kumari P, Sharma P, Srivastava S, Srivastava MM (2006) Bio sorption studies on shelled Moringa oleifera Lamarck seed powder: removal and recovery of arsenic from aqueous system. Int J Miner Process 132(78):131–139

    Article  CAS  Google Scholar 

  • Kuyucak N, Volesky B (1989) Biosorbents for recovery of metals from industrial solutions. Biotechnol. Lett. 10, 137–142.

    Article  CAS  Google Scholar 

  • Kuyucak N, Volesky B (1988) Biosorbents for recovery of metals from industrial solutions. Biotechnol Lett 10(2):137–142

    Article  CAS  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120

    Article  CAS  Google Scholar 

  • Liu WJ, Zhu YG, Hu Y, Williams PN, Gault AG, Meharg AA, Charnock JM, Smith FA (2006) Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.). Environ Sci Technol 40:5730–5736

    Article  CAS  Google Scholar 

  • Lodenius M, Herranen M (1981) Influence of a chlor-alkali plant on the mercury contents of fungi. Chemosphere 10:313–318

    Article  CAS  Google Scholar 

  • Lombi E, Zhao F, Fuhrmann M, Ma LQ, McGrath SP (2002) Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytol 156:195

    Article  CAS  Google Scholar 

  • Loukidou MX, Matis KA, Zouboulis AI (2001) Removal of arsenic from contaminated dilute aqueous solutions by biosorption. In: 7th international conference on environmental science and technology Ermoupolis, Syros Island, Sept 2001, pp 286–290

    Google Scholar 

  • Loukidou MX, Matis KA, Zouboulis AI, Liakopoulou-Kyriakidou M (2003) Removal of As(V) from wastewaters by chemically modified fungal biomass. Water Res 37(18):4544–4552

    Article  CAS  Google Scholar 

  • Low KS, Lee CK (1990) The removal of cationic dyes using coconut husk as an adsorbent. Pertanica 13:83–103

    Google Scholar 

  • Luongo T, Ma LQ (2005) Characteristics of arsenic accumulation by Pteris and non-Pteris ferns. Plant Soil 277:117

    Article  CAS  Google Scholar 

  • Ma LQ, Komar KMM, Tu C, Zhang W, Cai Y, Kenence ED (2001) A fern that hyperaccumulates As. Nature Lond 409:579

    Article  CAS  Google Scholar 

  • Mamisahebei S, Jahed-Khaniki GR, Torabani A, Nasseri S, Naddafi K (2007) Removal of arsenic from an aqueous solution by pretreated waste tea fungal biomass. Iran J Environ Health Sci Eng 4(2):85–92

    CAS  Google Scholar 

  • Mandal BK, Roychowdhury T, Samanta G, Basu K, Chowdhury P (1996) Arsenic in groundwater in seven districts of West Bengal, India: the biggest arsenic calamity in the world. Curr Sci 70(11):976–986

    CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London, p 889

    Google Scholar 

  • Mata YN, Blázquez ML, Ballester A, González FMuñoz JA (2008) Characterization of the biosorption of cadmium, lead and copper with the brown alga Fucus vesiculosus. J Hazard Mat 158:316–323

    Article  CAS  Google Scholar 

  • Mazej Z, Germ M, (2009) Trace element accumulation and distribution in four aquatic ­macrophytes. Chemosphere 74:642–647

    Article  CAS  Google Scholar 

  • Mcafee BJ, Gould WD, Nedeau JC, da Costa ACA (2001) Biosorption of metal ions using chitosan, chitin, and biomass of Rhizopus oryzae. Sep Sci Technol 36(14):3207–3222

    Article  CAS  Google Scholar 

  • Meharg AM, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Physiol 154:29–43

    Article  CAS  Google Scholar 

  • Mehrag AA, Macnair MR (1990) An altered phosphate uptake system in arsenate-tolerant Holcus lanatus L. New Phytol 116:29–35

    Article  Google Scholar 

  • Mehrag AA, Macnair MR (1992) Supression of the high-affinity phosphate-uptake system: a mechanism of arsenate tolerance in Holcus lanatus L. J Exp Bot 43:519–524

    Article  Google Scholar 

  • Mench M, Vangronsveld J, Clijsters H, Lepp NW, Edwards R (2000) In situ metal immobilisation and phytostabilisation of contaminated soils. In: Rerry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. Lews Publishers, Bora Raton, pp 323–358

    Google Scholar 

  • Mench M, Bussiere S, Boisson J, Castaing E, Vangronsveld J, Ruttens A, De Koe T, Bleeker P, Assuncão A, Manceau A (2003) Progress in remediation and revegetation of the barren jales gold mine spoil after in situ treatments. Plant Soil 249:187–202

    Article  CAS  Google Scholar 

  • Mkandawire M, Taubert B, Duel EG (2005) Resource manipulation in uranium and arsenic attenuation by Lemna gibba L. (duckweed) in tailing water of a former uranium mine. Water Air Soil Pollut 166:83–101

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU Jr, Bricka M, Smith F, Yancey B, Mohammad J, Steele PH, Alexandre-Franco MF, Serrano VG, Gong H (2007) Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J Colloid Interf Sci 310(1):57–73

    Article  CAS  Google Scholar 

  • Mohanty K, Jha M, Meikap BC, Biswas MN (2006) Biosorption of Cr(VI) from aqueous solutions by Eichhornia crassipes. J Chem Eng 117(1):71–77

    Article  CAS  Google Scholar 

  • Mok WM, Wai CM (1994) Mobilization of arsenic in contaminated river waters. In: Nriagu JO (ed) Arsenic in the environment, part I: cycling and characterization. Wiley, New York, pp 99–117

    Google Scholar 

  • Mukherjee S, Kumar S (2005) Adsorptive uptake of arsenic (V) from water by aquatic fern Salvinia natans. J Water Supply Res Technol AQUA 54(1):47–53

    CAS  Google Scholar 

  • Murugesan GS, Sathishkumar M, Swaminathan K (2006) Arsenic removal from groundwater by pretreated waste tea fungal biomass. Bioresour Technol 97(3):483–487

    Article  CAS  Google Scholar 

  • Naidu R, Smith E, Owens G, Nadebaum P, Bhattacharya P (2006) Management of arsenic-contaminated soils. In: Naidu R, Smith E, Owens G, Bhattacharya P, Nadebaum P (eds) Managing arsenic in the environment: from soil to human health. CSIRO Publishing, Melbourne, pp 419–453

    Google Scholar 

  • Nieboer E, Padovan D, Lavoie P (1984) Anion accumulation by lichens. II. Competition and toxicity studies involving arsenate, phosphate, sulfate, and sulphite. New Phytol 96:83–94

    Article  CAS  Google Scholar 

  • National Research Council Committee on Animal Nutrition (NRCC) (1980) Mineral tolerance of domestic animals. National Academy of Science, Washington, DC

    Google Scholar 

  • O’Keefe DM, Sylvia DM (1991) Mechanisms of the vesicular-arbuscular mycorrhizal plant-growth response. In: Arora DK, Rai B, Mukerji KG, Knudsen GR (eds) Handbook of applied mycology. Marcel Dekker, New York, pp 35–53

    Google Scholar 

  • Osborne FH, Ehrlich HL (1976) Oxidation of arsenite by a soil isolated of alcaligenes. J Appl Bacteriol 41:295–305

    Article  CAS  Google Scholar 

  • Oyarzun R, Cubas P, Higueras P, Lillo J, Llanos W (2008) Environmental assessment of the arsenic-rich, Rodalquilar gold–(copper–lead–zinc) mining district, SE Spain: data from soils and vegetation. Environ Geol 58:761–777. doi:DOI 10.1007/s00254-008-1550-3

    Article  CAS  Google Scholar 

  • Pandey PK (2000) Who should be credited for the discovery and first reporting of arsenicosis in Kaudikasa in Madhya Pradesh? Curr Sci 78:1412

    Google Scholar 

  • Pandey PK, Khare RN, Sharma S, Pandey M (1999) Arsenicosis and deteriorating ground water quality: unfolding crisis in central East Indian region. Curr Sci 77:686–693

    CAS  Google Scholar 

  • Pandey PK, Choubey S, Verma Y, Pandey M, Chandrashekhar K (2009) Biosorptive removal of arsenic from drinking water. Bioresour Technol 100:634–637

    Article  CAS  Google Scholar 

  • Peryea FJ (1998) Phosphate starter fertilizer temporarily enhances soil arsenic uptake by apple trees grown under field conditions. Hortic Sci 33:826–829

    CAS  Google Scholar 

  • Peterson PL, Benson LM, Zeive R (1981) Metalloids. In: Lepp NW (ed) Effects of heavt metal pollution on plants. Applied Science, London, pp 272–342

    Google Scholar 

  • Pickering IJ, Prince RC, George MJ, Smith RD, George GN, Salt DE (2000) Salt reduction and coordination of arsenic in Indian mustard. Plant Physiol 122:1171–1177

    Article  CAS  Google Scholar 

  • Pokrovski GS, Gout R, Zotov A, Schott J, Harrichoury JC (1996) Thermodynamic properties and stoichiometry of the arsenic(III) hydroxide complexes at hydrothermal conditions. Geochim Cosmochim Acta 60:737–749

    Article  CAS  Google Scholar 

  • Porter EK, Peterson PJ (1975) Arsenic accumulation by plants on mine waste (United Kingdom). Sci Total Environ 4:365–371

    Article  CAS  Google Scholar 

  • Prasad MNV (2004) Phytoremediation of metals and radionuclides in the environment: the case of natural hyperaccumulators, metal transport, soil-amending chelators and transgenic plants. In: Prasad MNV (ed) Heavy metal stress in plants: from biomolecules to ecosystems, 2nd edn. Springer, Heidelberg, pp 345–392

    Chapter  Google Scholar 

  • Prasad MNV (2008) Trace element in traditional healing plants-remedies or risk. In: Prasad MNV (ed) Trace elements as contaminants and nutrients: consequences in ecosystems and human health. John Wiley & Sons, Inc., Hoboken, NJ, USA

    Chapter  Google Scholar 

  • Quek SY, Al Duri B, Wase DAJ, Forster CF (1998) Coir as a biosorbent of copper and lead. Process Saf Environ Protect 76(B1):50–54

    Article  CAS  Google Scholar 

  • Raab A, Williams PN, Meharg A, Feldmann J (2007) Uptake and translocation of inorganic and methylated arsenic species by plants. Environ Chem 4:197–203

    Article  CAS  Google Scholar 

  • Rahman MA, Hasegawaa H, Ueda K, Makia T, Rahman MM (2008) Influence of phosphate and iron ions in selective uptake of arsenic species by water fern (Salvinia natans L). Chem Eng J 145:179–184

    Article  CAS  Google Scholar 

  • Rajkumar M, Freitas H (2008) Influence of metal resistant-plant growth promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. Chemosphere 71:834–842

    Article  CAS  Google Scholar 

  • Ramelow GJ, Fralick D, Zhao Y (1992) Factors affecting the uptake of aqueous metal ions by dried sea weed biomass. Microbios 72:81–93

    CAS  Google Scholar 

  • Randall JM, Bermann RL, Garrett V, Waiss ACJ (1974) Use of bark to remove heavy metal ions from waste solutions. Forest Prod J 24(9):80–84

    CAS  Google Scholar 

  • Ranjan D, Talat M, Hasan SH (2009) Biosorption of arsenic from aqueous solution using agricultural residue ‘rice polish’. J Hazard Mater 166(2–3):1050–1059

    Article  CAS  Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8(2):221–226

    Article  CAS  Google Scholar 

  • Ravenscroft P, Brammer H, Richards K (2009) Arsenic pollution: a global synthesis. Wiley-Blackwell, Oxford, p 588

    Book  Google Scholar 

  • Rock S, Sayre PG (2000) Regulatory considerations for phytoremediation. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. John Wiley, New York, pp 43–49

    Google Scholar 

  • Ross SM (1994) Toxic metals: fate and distribution in contaminated ecosystems. In: Ross SM (ed) Toxic metals in soil-plant systems. Wiley, Chichester, pp 189–243

    Google Scholar 

  • Ross SM, Kaye KJ (1994) The meaning of metal toxicity in soil-plant systems. In: Ross SM (ed) Toxic metals in soil-plant systems. Wiley, Chichester, pp 27–61

    Google Scholar 

  • Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, New York/Chichester/Brisbane/Toronto/Singapore, p 432

    Google Scholar 

  • Sag Y, Aktay Y (2002) Kinetic studies on sorption of Cr(VI) and Cu(II) ions by chitin, chitosan, and Rhizopus arrhizus. Biochem Eng J 12:143–153

    Article  CAS  Google Scholar 

  • Sardans J, Peñuelas J (2006) Introduction of the factor of partitioning in the lithogenic enrichment factors of trace element bioaccumulation in plant tissues. Environ Monit Assess 115:473–498

    Article  CAS  Google Scholar 

  • Sattelmacher B (2001) The apoplast and its significance for plant mineral nutrition. New Phytol 14:167–192

    Article  Google Scholar 

  • Say R, Yilmaz N, Denizli A (2003) Biosorption of cadmium, lead, mercury, and arsenic ions by the fungus Penicillium purpurogenum. Sep Sci Technol 38(9):2039–2053

    Article  CAS  Google Scholar 

  • Schnoor JL (1998) Phytoremediation. Technology evaluation report TE-98-01. Prepared for Ground-Water Remediation Technology Analysis Center, Pittsburg

    Google Scholar 

  • Sekhar KC, Kamala CT, Chary NS, Mukherjee AB (2007) Arsenic accumulation by Talinum cuneifolium – application for phytoremediation of arsenic-contaminated soils of Patancheru, Hyderband, India. In: Bhattacharya P, Mukherjee AB, Bundschuh J, Zevenhoven R, Loeppert RH (eds) Arsenic in soil and groundwater environment: biogeochemical interactions, health effects and remediation, vol 9, Trace metals and other contaminants in environment. Elsevier, Amsterdam, pp 315–338

    Chapter  Google Scholar 

  • Senthilkumaar S, Bharathi S, Nithyanandhi D, Subburam V (2000) Biosorption of toxic heavy metals from aqueous solutions. Bioresour Technol 75(2):163–165

    Article  CAS  Google Scholar 

  • Siedlecka A, Tukendorf A, Skórzyńska-Polit E, Maksymiec W, Wójcik M, Baszyński T, Krupa Z (2001) Angiosperms (Asteraceae, Convolvulaceae, Fabaceae and poaceae; other than Btassicaceae). In: Prasad MNV (ed) Metals in the environment. Marcel Dekker, New York/Basel, pp 171–217

    Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 1:517–568

    Article  Google Scholar 

  • Stoltz E, Greger M (2002a) Accumulation properties of As, Cd, Pb, and Zn by four wetland plant species growing on submerged mine tailings. Environ Exp Bot 47:271–280

    Article  CAS  Google Scholar 

  • Stoltz E, Greger M (2002b) Cotton grass effects of trace elements in submersed mine tailings. J Environ Qual 31:1477–1483

    Article  CAS  Google Scholar 

  • Stoltz E, Greger M (2005) Effects of different wetland plant species on fresh unweathered sulphidic mine tailings. Plant Soil 276(1–2):251–261

    Article  CAS  Google Scholar 

  • Stoltz E, Greger M (2006a) Release of metals and arsenic from various mine tailings by Eriophorum angustifolium. Plant Soil 289(1–2):199–210

    Article  CAS  Google Scholar 

  • Stoltz E, Greger M (2006b) Root penetration through sealing layers at mine deposit sites. Waste Manage Res 24:552–559

    Article  Google Scholar 

  • Stoltz E, Greger M (2006c) Influences of wetland plants on weathered acidic mine tailings. Environ Pollut 144(2):689–694

    Article  CAS  Google Scholar 

  • Sun Y, Zhou Q-X, Liu W-T, Wang L (2009) Joint effects of arsenic, cadmium on plant growth and metal bioaccumulation: a potential Cd hyperaccumulator and As-excluder Bidens pilosa L. J Hazard Mater 161(2–3):808–814

    Article  CAS  Google Scholar 

  • Sun GX, Williams PN, Carey AM, Zhu YG, Deacon C, Raab A, Feldmann J, Islam RM, Meharg AA (2008) Inorganic As in rice bran and its products are an order of magnitude higher than in bulk grain. Environ Sci Technol 42:7542–7546

    Google Scholar 

  • Suthersan SS (2002) Natural and enhanced remediation systems. Arcadis Lewis Publishers/CRC Press, Boca Raton

    Google Scholar 

  • Takeda A, Kimura K, Yamasaki S-I (2004) Analysis of 57 elements in Japanese soils, with special reference to soil group and agriculture use. Geoderma 119:291–307

    Article  CAS  Google Scholar 

  • Terry T, Zayed AM (1994) Sellenium volatilization in plants. In: Frankenberger WT Jr, Benson S (eds) Sellenium in the environment. Marcel Dekker, New York, pp 343–367

    Google Scholar 

  • Thompson DJ (1993) A chemical hypothesis for arsenic methylation in mammals. Chem Biol Interact 88(89–1):14

    Google Scholar 

  • Tu C, Ma LQ (2002) Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake. J Environ Qual 31:641–647

    Article  CAS  Google Scholar 

  • Tu C, Ma LQ, Bondada B (2002) Arsenic accumulation in the hyperaccumulator Chinese brake and its utilization potential for phytoremediation. J Environ Qual 31:1671–1675

    Article  CAS  Google Scholar 

  • Ullrich-Eberius C, Sanz IA, Novacky AJ (1989) Evaluation of arsenate- and vandate associated changes of electrical membrane potential and phosphate transport in Lemma gibba GI. J Exp Bot 40:119–128

    Article  CAS  Google Scholar 

  • US EPA (US Environmental Protection Agency) (2000) Introduction to phytoremediation. Publication nr 600/R-99/107, Cincinnati

    Google Scholar 

  • US EPA (2002) Arsenic treatment technologies for soil, waste, and water. http://www.clu-in.org/arsenic. 6 Feb 2009

  • US EPA (2004) Monitored natural attenuation, chapter IX. In: How to evaluate alternative cleanup technologies for underground storage tank sites. A guide for corrective action plan reviewers. http://www.epa.gov/oust/pubs/tums.htm. Last updated 23 June 2008, visited 12 July 2009

  • Veglio F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44:301–16

    Article  CAS  Google Scholar 

  • Vetter J (1994) Data on arsenic and cadmium contents of some common mushrooms. Toxicon 32:11–15

    Article  CAS  Google Scholar 

  • Vetter J (2004) Arsenic content of some edible mushroom species. Eur Food Res Technol 219(1):71–74

    Article  CAS  Google Scholar 

  • Vetter J, Berta E (2005) Mercury content of the cultivated mushroom Agaricus bisporus. Food Control 16:113–116, IF: 1.820

    Article  CAS  Google Scholar 

  • Vilar VJP, Botelho CMS, Bonaventura RAR (2006) Equilibrium and kinetics modelling of Cd(II) biosorption by algae Gelidium and agar extraction algal waste. Water Res 40(2):291–302

    Article  CAS  Google Scholar 

  • Volesky B (2003) Sorption and biosorption. BV Sorbex, Inc., Montreal

    Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11(3):235–250

    Article  CAS  Google Scholar 

  • Wallschläger D, London J (2008) Determination of methylated arsenic-sulfur compounds in groundwater. Environ Sci Technol 42(1):228–234

    Article  CAS  Google Scholar 

  • Warren GP, Alloway BJ (2003) Reduction of arsenic uptake by lettuce with ferrous sulfate applied to contaminated soil. J Environ Qual 32:767–772

    Article  CAS  Google Scholar 

  • Wells JM, Richardson DHS (1985) Anion accumulation by the moss Hylocomium splendens: uptake and competition studies involving arsenate, selenate, selenite, phosphate, sulphate and sulphite. New Phytol 101:571–583

    Article  CAS  Google Scholar 

  • Wenzel WW, Bunkowski M, Puschenreiter M, Horak O (2003) Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excludor plants on serpentine soil. Environ Pollut 123:131–138

    Article  CAS  Google Scholar 

  • WHO (2001) Arsenic and arsenic compounds, environment health criteria, 2nd edn. World Health Organization (WHO), Geneva

    Google Scholar 

  • Xu H, Allard B, Grimvall A (1991) Effects of acidification and natural organic materials on the mobility of arsenic in the environment. Water Air Soil Pollut 57:269–278

    Article  Google Scholar 

  • Xu XY, McGrath SP, Meharg A, Zhao FJ (2008) Growing rice aerobically markedly decreases arsenic accumulation. Environ Sci Technol 42:5574–5579

    Article  Google Scholar 

  • Zhao FJ, Wang JR, Barker JHA, Schat H, Bleeker PM, McGrath SP (2003) The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytol 159:403–410

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meththika Vithanage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dabrowska, B.B., Vithanage, M., Gunaratna, K.R., Mukherjee, A.B., Bhattacharya, P. (2012). Bioremediation of Arsenic in Contaminated Terrestrial and Aquatic Environments. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds) Environmental Chemistry for a Sustainable World. Environmental Chemistry for a Sustainable World. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2439-6_12

Download citation

Publish with us

Policies and ethics