Atmospheric Aerosol Climatology over the Globe: Emphasis on Dust Storms

  • Harry D. Kambezidis
  • Dimitra H. Kambezidou
  • Stella-Joanna H. Kampezidou
Conference paper
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Abstract

Atmospheric aerosols play a major role in climate change science debate. These can influence climate in two ways, directly and indirectly. Since the ­concentration and composition of atmospheric aerosols are very variable in time and space, their characteristics cannot be studied individually, but in terms of their climatological effects. This study gives some of the main features that characterize atmospheric aerosols. Four locations in the world are selected due to their different environments (weather and atmospheric conditions). The aerosol optical depth and the Ångström-exponent are examined at these sites for the period 2002–2004. Emphasis is given on the atmospheric aerosols in the form of dust. The aerosol ­optical depth and the aerosol index are presented for a dust storm that occurred over Greece in April 2005.

Keywords

Dust Storm Aerosol Optical Depth Atmospheric Aerosol Dust Event Dust Aerosol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Day DE, Malm WC (2001) Aerosol light scattering measurements as a function of relative humidity: a comparison between measurements made at three different sites. Atmos Environ 35(30):5169–5176CrossRefGoogle Scholar
  2. 2.
    Dubovik O, Holben B et al (2002) Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J Atmos Sci 59(3):590–608CrossRefGoogle Scholar
  3. 3.
    Eck TF, Holben BN et al (1999) Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J Geophys Res 104(D24):31333–31349CrossRefGoogle Scholar
  4. 4.
    Holben BN, Tanré D et al (2001) An emerging ground-based aerosol climatology: aerosol optical depth from AERONET. Geophys Res 106((D11):12067–12097CrossRefGoogle Scholar
  5. 5.
    Ichoku C, Kaufman YJ et al (2004) Global aerosol remote sensing from MODIS. Adv Space Res 34(4):820–827CrossRefGoogle Scholar
  6. 6.
    Kambezidis HD, Kaskaoutis DG (2008) Aerosol climatology over four AERONET sites: an overview. Atmos Environ 42(8):1892–1906CrossRefGoogle Scholar
  7. 7.
    Kaskaoutis DG, Kambezidis HD et al (2008) Study on an intense dust storm over Greece. Atmos Environ 42(29):6884–6896CrossRefGoogle Scholar
  8. 8.
    Kaskaoutis DG, Kambezidis HD (2008) Investigation of the aerosol optical properties under certain conditions in Athens, Greece. Conference SOLARIS. Hong Kong, China, pp 179–186Google Scholar
  9. 9.
    Kaskaoutis DG, Nastos PT et al (2010) Meteorological patterns associated with intense Saharan dust outbreaks over Greece in winter. Conference COMECAP. Patras, Greece, pp 1039–1047, ISBN: 978-960-99254-0-2Google Scholar
  10. 10.
    Kaufman YJ, Tanre D et al (2002) A satellite view of aerosols in the climate system. Nature 419(6903):215–223CrossRefGoogle Scholar
  11. 11.
    Koukouli ME, Balis DS et al (2006) Aerosol variability over Thessaloniki using ground based remote sensing observations and the TOMS aerosol index. Atmos Environ 40(28):5367–5378CrossRefGoogle Scholar
  12. 12.
    Moulin C, Lambert CE et al (1998) Satellite climatology of African dust transport in the Mediterranean atmosphere. J Geophys Res 103(D11):13137–13144CrossRefGoogle Scholar
  13. 13.
    Ogunjobi KO, He Z et al (2008) Spectral aerosol optical properties from AERONET Sun-photometric measurements over West Africa. Atmos Res 88(2):89–107CrossRefGoogle Scholar
  14. 14.
    Reid JS, Eck TF et al (1999) Use of the Ångstrom exponent to estimate the variability of optical and physical properties of aging smoke particles in Brazil. J Geophys Res 104(D22)):27473–27489CrossRefGoogle Scholar
  15. 15.
    Remer LA, Kaufman YJ et al (1998) Biomass burning aerosol size distribution and modeled optical properties. J Geophys Res 103(D24)):31879–31891CrossRefGoogle Scholar
  16. 16.
    Russell LM, Pandis SN et al (1994) Aerosol production and growth in the marine boundary layer. J Geophys Res 99(D10):20989–21003CrossRefGoogle Scholar
  17. 17.
    Smirnov A, Holben BN et al (2002) Optical properties of atmospheric aerosol in maritime environments. J Atmos Sci 59(3):501–523CrossRefGoogle Scholar
  18. 18.
    Torres O, Bhartia PK et al (1998) Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: theoretical basis. J Geophys Res 103(D14):17099–17110CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Harry D. Kambezidis
    • 1
  • Dimitra H. Kambezidou
    • 2
  • Stella-Joanna H. Kampezidou
    • 3
  1. 1.National Observatory of AthensAthensGreece
  2. 2.University of the AegeanLesbos IslandGreece
  3. 3.University of PatrasPatrasGreece

Personalised recommendations