Rat Embryonic Cortical Neural Stem Cells: Role of Hypoxia on Cell Proliferation and Differentiation

  • Yong Liu
  • Haixia Lu
  • Xinlin Chen
Part of the Stem Cells and Cancer Stem Cells book series (STEM, volume 3)


There is no effective therapy currently available to recover brain structure and function following ischemic stroke. Neural stem cells/neural progenitor cells (NSCs/NPCs) are capable to self-renew and differentiate into neurons. Brain hypoxia/ischemia stimulates the proliferation of NSCs/NPCs in both the subventricular zone (SVZ) and the subgranular zone (SGZ) of adult brain. Endogenous mobilization and exogenous transplantation of NSCs facilitate the recovery of stroke by replacing lost neurons and produce various neurotrophic factors that minimize damage and promote recovery. Many factors including neurotransmitters and their receptors affect adult neurogenesis following stroke. Investigation of the mechanisms underlying the benefits of those factors will lead to viable treatment options for ischemic brain injury.


Subgranular zone Neural stem cells/neural progenitor cells Neurogenesis Central nervous system Spinal cord Nervous system 


  1. Airaksinen MS, Saarma M (2002) The GDNF family: signalling biological function and therapeutic value. Nat Rev Neruosci 3:383–394CrossRefGoogle Scholar
  2. Arvidsson A, Kokaia Z, Lindvall O (2001) N-methyl-D-as-partate receptor mediated increase of neurogenesis in adult rat dentate gyrus following stroke. Eur J Neurosci 14:10–18PubMedCrossRefGoogle Scholar
  3. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–970PubMedCrossRefGoogle Scholar
  4. Burns TC, Verfaillie CM, Low WC (2009) Stem cells for ischemic brain injury: a critical review. J Comp Neurol 515:125–144PubMedCrossRefGoogle Scholar
  5. Calza L, Giuliani A, Fernandez M, Pirondi S, D’Intino G, Aloe L, Giardino L (2003) Neural stem cells and cholinergic neurons: regulation by immunolesion and treatment with mitogens, retinoic acid, and nerve growth factor. Proc Natl Acad Sci USA 100:7325–7330PubMedCrossRefGoogle Scholar
  6. Canudas AM, Di Giorgi-Gerevini V, Iacovelli L, Nano G, D’Onofrio M, Arcella A, Giangaspero F, Busceti C, Ricci-Vitiani L, Battaglia G, Nicoletti F, Melchiorri D (2004) PHCCC, a specific enhancer of type 4 metabotropic glutamate receptors, reduces proliferation and promotes differentiation of cerebellar granule cell neuroprecursors. J Neurosci 24:10343–10352PubMedCrossRefGoogle Scholar
  7. Castiglione M, Calafiore M, Costa L, Sortino MA, Nicoletti F, Copani A (2008) Group I metabotropic glutamate receptors control proliferation, survival and differentiation of cultured neural progenitor cells isolated from the subventricular zone of adult mice. Neuropharmacology 55:560–567PubMedCrossRefGoogle Scholar
  8. Chen X, Tian Y, Yao L, Zhang J, Liu Y (2010) Hypoxia stimulates proliferation of rat neural stem cells with influence on the expression of cyclin D1 and c-Jun N-terminal protein kinase signalling pathway in vitro. Neuroscience 165:705–714PubMedCrossRefGoogle Scholar
  9. Choi YS, Cho KO, Kim SY (2007) Fluoxetine does not affect the ischemia-induced increase of neurogenesis in the adult rat dentate gyrus. Arch Pharm Res 30:641–645PubMedCrossRefGoogle Scholar
  10. Choi KC, Yoo DS, Cho KS, Huh PW, Kim DS, Park CK (2008) Effect of single growth factor and growth factor combinations on differentiation of neural stem cells. J Korean Neurosurg Soc 44:375–381PubMedCrossRefGoogle Scholar
  11. Di Giorgi Gerevini VD, Caruso A, Cappuccio I, Ricci Vitiani L, Romeo S, Della Rocca C, Gradini R, Melchiorri D, Nicoletti F (2004) The mGlu5 metabotropic glutamate receptor is expressed in zones of active neurogenesis of the embryonic and postnatal brain. Dev Brain Res 150:17–22CrossRefGoogle Scholar
  12. Di Giorgi-Gerevini V, Melchiorri D, Battaglia G, Ricci-Vitiani L, Ciceroni C, Busceti CL, Biagioni F, Iacovelli L, Canudas AM, Parati E, De Maria R, Nicoletti F (2005) Endogenous activation of metabotropic glutamate receptors supports the proliferation and survival of neural progenitor cells. Cell Death Differ 12:1124–1133PubMedCrossRefGoogle Scholar
  13. Erlandsson A, Enarsson M, Forsberg-Nilsson K (2001) Immature neurons from CNS stem cells proliferate in response to platelet-derived growth factor. J Neurosci 21:3483–3491PubMedGoogle Scholar
  14. Genove G, DeMarco U, Xu H, Goins WF, Ahrens ET (2005) A new transgene reporter for in vivo magnetic resonance imaging. Nat Med 11:450–454PubMedCrossRefGoogle Scholar
  15. Keilhoff G, Grecksch G, Bernstein HG, Roskoden T, Becker A (2010) Risperidone and haloperidol promote survival of stem cells in the rat hippocampus. Eur Arch Psychiatry Clin Neurosci 260:151–162PubMedCrossRefGoogle Scholar
  16. Locatelli F, Bersano A, Ballabio E, Lanfranconi S, Papadimitriou D, Strazzer S, Bresolin N, Comi GP, Corti S (2009) Stem cell therapy in stroke. Cell Mol Life Sci 66:757–772PubMedCrossRefGoogle Scholar
  17. Marin O, Rubenstain JL (2003) Cell migration in the forebrain. Annu Rev Neurosci 26:441–483PubMedCrossRefGoogle Scholar
  18. Mazumdar J, O’Brien WT, Johnson RS, LaManna JC, Chavez JC, Klein PS, Simon MC (2010) O2 regulates stem cells through Wnt/β-catenin signalling. Nat Cell Biol 12:1007–1013PubMedCrossRefGoogle Scholar
  19. Melchiorri D, Nicoletti F, Battaglia G, Storto M, Ngomba RT, Iacovelli L, Arcella A, Gradini R, Sale P, Rampello L, De Vita T, Di Marco R, Bruno V (2007) Metabotropic glutamate receptors: beyond the regulation of synaptic transmission. J Psyneuen 32:40–45Google Scholar
  20. Nakagawa S, Kim JE, Lee R, Chen J, Fujioka T, Malberg J, Tsuji S, Duman RS (2002) Localization of phosphorylated cAMP response element-binding protein in immature neurons of adult hippocampus. J Neurosci 22:9868–9876PubMedGoogle Scholar
  21. Newton SS, Duman RS (2007) Neurogenic actions of atypical antipsychotic drugs and therapeutic implications. CNS Drugs 21:715–725PubMedCrossRefGoogle Scholar
  22. Panchision DM (2009) The role of oxygen in regulating neural stem cells in development and disease. J Cell Physiol 220:562–568PubMedCrossRefGoogle Scholar
  23. Parent JM (2003) Injury-induced neurogenesis in the adult mammalian brain. Neuroscientist 9:261–272PubMedCrossRefGoogle Scholar
  24. Park KI (2000) Transplantation of neural stem cell: cellular & gene therapy for hypoxic-ischemic brain injury. Yonsei Med J 41:825–835PubMedGoogle Scholar
  25. Qian Q, Davis AA, Goderie SK, Temple S (1997) FGF2 concentration regulates the generation of neurons and glia from multipotent cortical stem cells. Neuron 18:81–93PubMedCrossRefGoogle Scholar
  26. Rafalski VA, Brunet A (2011) Energy metabolism in adult neural stem cell fate. Prog Neurobiol 93:182–203PubMedCrossRefGoogle Scholar
  27. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710PubMedCrossRefGoogle Scholar
  28. Shi Q, Zhang P, Zhang J, Chen X, Lu H, Tian Y, Parker TL, Liu Y (2009) Adenovirus-mediated brain-derived neurotrophic factor expression regulated by hypoxia response element protects brain from injury of transient middle cerebral artery occlusion in mice. Neurosci Lett 465:220–225PubMedCrossRefGoogle Scholar
  29. Shingo T, Sorokan ST, Shimazaki T, Weiss S (2001) Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J Neurosci 21:9733–9743PubMedGoogle Scholar
  30. Tarasenko YI, Yu Y, Jordan PM, Bottenstein J, Wu P (2004) Effect of growth factors on proliferation and phenotypic differentiation of human fetal neural stem cells. Neurosci Res 78:625–636CrossRefGoogle Scholar
  31. Temple S (1989) Division and differentiation of isolated CNS blast cells in microculture. Nature 340:471–473PubMedCrossRefGoogle Scholar
  32. Tian Y, Liu Y, Chen X, Kang Q, Zhang J, Shi Q, Zhang H (2010a) AMN082 promotes the proliferation and differentiation of neural progenitor cells with influence on phosphorylation of MAPK signalling pathways. Neurochem Int 57:8–15PubMedCrossRefGoogle Scholar
  33. Tian Y, Liu Y, Chen X, Zhang H, Shi Q, Zhang J, Yang P (2010b) Tetramethylpyrazine promotes proliferation and differentiation of neural stem cells from rat brain in hypoxic condition via mitogen-activated protein kinases pathway in vitro. Neurosci Lett 474:26–31PubMedCrossRefGoogle Scholar
  34. Tozuka Y, Fukuda S, Namba T, Seki T, Hisatsune T (2005) GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron 47:803–815PubMedCrossRefGoogle Scholar
  35. Xiao X, Liu Y, Qi C, Qiu F, Chen X, Zhang J, Yang P (2010) Neuroprotection and enhanced neurogenesis by tetramethylpyrazine in adult rat brain after focal ischemia. Neurol Res 32:547–555PubMedCrossRefGoogle Scholar
  36. Zhang P, Liu Y, Li J, Kang Q, Tian Y, Chen X, Shi Q, Song T (2006) Cell proliferation in ependymal/subventricular zone and nNOS expression following focal cerebral ischemia in adult rats. Neurol Res 28:91–96PubMedCrossRefGoogle Scholar
  37. Zhang P, Li J, Liu Y, Chen X, Kang Q (2009) Transplanted human embryonic neural stem cells survive, migrate, differentiate and increase endogenous nestin expression in adult rat cortical peri-infarction zone. Neuropathology 29:410–421PubMedCrossRefGoogle Scholar
  38. Zhao T, Zhang CP, Liu ZH, Wu LY, Huang X, Wu HT, Xiong L, Wang X, Wang XM, Zhu LL, Fan M (2008) Hypoxia-driven proliferation of embryonic neural stem/progenitor cells—role of hypoxia-inducible transcription factor-1alpha. FEBS J 275:1824–1834PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Institute of Neurobiology, National Key Academic Subject of PhysiologyXi’an Jiaotong University School of MedicineXi’anChina

Personalised recommendations