Human Fetal Mesenchymal Stem Cells for Prenatal and Postnatal Transplantation

  • Mark S.K. Chong
  • Jerry K.Y. Chan
Part of the Stem Cells and Cancer Stem Cells book series (STEM, volume 3)


Mesenchymal Stem Cells (MSC) isolated from early-mid-gestation fetal tissue are highly proliferative and capable of differentiation towards fat, bone, cartilage, muscle and oligodendrocytes. In addition, these cells exhibit several key clinical advantages over their adult counterparts, including increased proliferation capacity, greater plasticity and unique immunological characteristics. More recently, fetal MSC have been shown to home to and rescue degenerative tissue, raising the possibility of using fetal MSC for regenerative therapeutics. Consequently, fetal MSC have been studied for a range of potential clinical applications including stem cell or gene therapy for the correction of genetic deficiencies, tissue engineering and the management of immune disorders.


Fetal MSC Prenatal Postnatal Transplantation Bone marrow 


  1. Aguilar S, Nye E, Chan J, Loebinger M, Spencer-Dene B, Fisk N, Stamp G, Bonnet D, Janes SM (2007) Murine but not human mesenchymal stem cells generate osteosarcoma-like lesions in the lung. Stem Cells 25(6):1586–1594PubMedCrossRefGoogle Scholar
  2. Almeida-Porada G, El Shabrawy D, Porada C, Zanjani ED (2002) Differentiative potential of human metanephric mesenchymal cells. Exp Hematol 30(12):1454–1462PubMedCrossRefGoogle Scholar
  3. Anzalone R, Iacono ML, Corrao S, Magno F, Loria T, Cappello F, Zummo G, Farina F, La Rocca G (2010) New emerging potentials for human Wharton’s jelly mesenchymal stem cells: immunological features and hepatocyte-like differentiative capacity. Stem Cells Dev 19(4):423–438PubMedCrossRefGoogle Scholar
  4. Campagnoli C, Roberts IAG, Kumar S, Bennett PR, Bellantuono I, Fisk NM (2001) Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98(8):2396–2402PubMedCrossRefGoogle Scholar
  5. Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98(5):1076–1084PubMedCrossRefGoogle Scholar
  6. Chan J, O’Donoghue K, de la Fuente J, Roberts IA, Kumar S, Morgan JE, Fisk NM (2005) Human fetal mesenchymal stem cells as vehicles for gene delivery. Stem Cells 23(1):93–102PubMedCrossRefGoogle Scholar
  7. Chan J, O’Donoghue K, Gavina M, Torrente Y, Kennea N, Mehmet H, Stewart H, Watt DJ, Morgan JE, Fisk NM (2006) Galectin-1 induces skeletal muscle differentiation in human fetal mesenchymal stem cells and increases muscle regeneration. Stem Cells 24(8):1879–1891PubMedCrossRefGoogle Scholar
  8. Chan J, Waddington SN, O’Donoghue K, Kurata H, Guillot PV, Gotherstrom C, Themis M, Morgan JE, Fisk NM (2007) Widespread distribution and muscle differentiation of human fetal mesenchymal stem cells after intrauterine transplantation in dystrophic mdx mouse. Stem Cells 25(4):875–884PubMedCrossRefGoogle Scholar
  9. Chan J, Kumar S, Fisk NM (2008) First trimester embryo-fetoscopic and ultrasound-guided fetal blood sampling for ex vivo viral transduction of cultured human fetal mesenchymal stem cells. Hum Reprod 23(11):2427–2437Google Scholar
  10. Gotherstrom C, Ringden O, Westgren M, Tammik C, Le Blanc K (2003) Immunomodulatory effects of human foetal liver-derived mesenchymal stem cells. Bone Marrow Transplant 32(3):265–272PubMedCrossRefGoogle Scholar
  11. Gotherstrom C, Ringden O, Tammik C, Zetterberg E, Westgren M, Le Blanc K (2004) Immunologic properties of human fetal mesenchymal stem cells. Am J Obstet Gynecol 190(1):239–245PubMedCrossRefGoogle Scholar
  12. Gotherstrom C, West A, Liden J, Uzunel M, Lahesmaa R, Le Blanc K (2005) Difference in gene expression between human fetal liver and adult bone marrow mesenchymal stem cells. Haematologica 90(8):1017–1026PubMedGoogle Scholar
  13. Götherström C, Lundqvist A, Duprez IR, Childs R, Berg L, le Blanc K (2011) Fetal and adult multipotent mesenchymal stromal cells are killed by different pathways. Cytotherapy 13(3):269–278PubMedCrossRefGoogle Scholar
  14. Guillot PV, Gotherstrom C, Chan J, Kurata H, Fisk NM (2007) Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem Cells 25(3):646–654PubMedCrossRefGoogle Scholar
  15. Guillot PV, Abass O, Bassett JH, Shefelbine SJ, Bou-Gharios G, Chan J, Kurata H, Williams GR, Polak J, Fisk NM (2008a) Intrauterine transplantation of human fetal mesenchymal stem cells from first-trimester blood repairs bone and reduces fractures in osteogenesis imperfecta mice. Blood 111(3):1717–1725PubMedCrossRefGoogle Scholar
  16. Guillot PV, Cook HT, Pusey CD, Fisk NM, Harten S, Moss J, Shore I, Bou-Gharios G (2008b) Transplantation of human fetal mesenchymal stem cells improves glomerulopathy in a collagen type I alpha 2-deficient mouse. J Pathol 214(5):627–636PubMedCrossRefGoogle Scholar
  17. Guillot PV, De Bari C, Dell’Accio F, Kurata H, Polak J, Fisk NM (2008c) Comparative osteogenic transcription profiling of various fetal and adult mesenchymal stem cell sources. Differentiation 76(9):946–957PubMedGoogle Scholar
  18. Hu Y, Liao L, Wang Q, Ma L, Ma G, Jiang X, Zhao RC (2003) Isolation and identification of mesenchymal stem cells from human fetal pancreas. J Lab Clin Med 141(5):342–349PubMedCrossRefGoogle Scholar
  19. in’t Anker P, Noort W, Scherjon S, Kleijburg-van der Keur C, Kruisselbrink A, van Bezooijen R, Beekhuizen W, Willemze R, Kanhai H, Fibbe W (2003a) Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica 88(8):845–852Google Scholar
  20. in’t Anker PS, Noort WA, Kruisselbrink AB, Scherjon SA, Beekhuizen W, Willemze R, Kanhai HHH, Fibbe WE (2003b) Nonexpanded primary lung and bone marrow–derived mesenchymal cells promote the engraftment of umbilical cord blood–derived CD34+ cells in NOD/SCID mice. Exp Hematol 31(10):881–889CrossRefGoogle Scholar
  21. Kennea NL, Stratou C, Naparus A, Fisk NM, Mehmet H (2005) Functional intrinsic and extrinsic apoptotic pathways in human fetal mesenchymal stem cells. Cell Death Differ 12(11):1439–1441PubMedCrossRefGoogle Scholar
  22. Kennea NL, Waddington SN, Chan J, O’Donoghue K, Yeung D, Taylor DL, Al-Allaf FA, Pirianov G, Themis M, Edwards AD, Fisk NM, Mehmet H (2009) Differentiation of human fetal mesenchymal stem cells into cells with an oligodendrocyte phenotype. Cell Cycle 8(7):1069–1079PubMedCrossRefGoogle Scholar
  23. Kurata H, Guillot PV, Chan J, Fisk NM (2007) Osterix induces osteogenic gene expression but not differentiation in primary human fetal mesenchymal stem cells. Tissue Eng 13(7):1513–1523PubMedCrossRefGoogle Scholar
  24. Le Blanc K (2003) Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 5(6):485–489PubMedCrossRefGoogle Scholar
  25. Le Blanc K, Gotherstrom C, Ringden O, Hassan M, McMahon R, Horwitz E, Anneren G, Axelsson O, Nunn J, Ewald U, Norden-Lindeberg S, Jansson M, Dalton A, Astrom E, Westgren M (2005) Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation 79(11):1607–1614PubMedCrossRefGoogle Scholar
  26. Lee ES, Chan J, Shuter B, Tan LG, Chong MS, Ramachandra DL, Dawe GS, Ding J, Teoh SH, Beuf O, Briguet A, Tam KC, Choolani M, Wang S-C (2009) Microgel iron oxide nanoparticles for tracking human fetal mesenchymal stem cells through magnetic resonance imaging. Stem Cells 27(8):1921–1931Google Scholar
  27. Macias MI, Grande J, Moreno A, Domínguez I, Bornstein R, Flores AI (2010) Isolation and characterization of true mesenchymal stem cells derived from human term decidua capable of multilineage differentiation into all 3 embryonic layers. Am J Obstet Gynecol 203(5):495.e499–495.e423CrossRefGoogle Scholar
  28. MacKenzie TC, Shaaban AF, Radu A, Flake AW (2002) Engraftment of bone marrow and fetal liver cells after in utero transplantation in MDX mice. J Pediatric Surg 37(7):1058–1064CrossRefGoogle Scholar
  29. Panaroni C, Gioia R et al (2009) In utero transplantation of adult bone marrow decreases perinatal lethality and rescues the bone phenotype in the knockin murine model for classical, dominant osteogenesis imperfecta. Blood 114(2):459–468Google Scholar
  30. Prockop DJ, Brenner M, Fibbe WE, Horwitz E, Le Blanc K, Phinney DG, Simmons PJ, Sensebe L, Keating A (2010) Defining the risks of mesenchymal stromal cell therapy. Cytotherapy 12(5):576–578PubMedCrossRefGoogle Scholar
  31. Schoeberlein A, Holzgreve W, Dudler L, Hahn S, Surbek DV (2005) Tissue-specific engraftment after in utero transplantation of allogeneic mesenchymal stem cells into sheep fetuses. Am J Obstet Gynecol 192(4):1044–1052PubMedCrossRefGoogle Scholar
  32. Shaw SW, David AL, De Coppi P (2011) Clinical applications of prenatal and postnatal therapy using stem cells retrieved from amniotic fluid. Curr Opin Obstet Gynecol 23(2):109–116PubMedCrossRefGoogle Scholar
  33. Vanleene M, Saldanha Z et al (2011) Transplantation of human fetal blood stem cells in the osteogenesis imperfecta mouse leads to improvement in multiscale tissue properties. Blood 117(3):1053–1060Google Scholar
  34. Zhang ZY, Teoh SH, Chong MS, Schantz JT, Fisk NM, Choolani MA, Chan J (2009a) Superior osteogenic capacity for bone tissue engineering of fetal compared with perinatal and adult mesenchymal stem cells. Stem Cells 27(1):126–137PubMedCrossRefGoogle Scholar
  35. Zhang ZY, Teoh SH, Chong WS, Foo TT, Chng YC, Choolani M, Chan J (2009b) A biaxial rotating bioreactor for the culture of fetal mesenchymal stem cells for bone tissue engineering. Biomaterials 30(14):2694–2704PubMedCrossRefGoogle Scholar
  36. Zhang ZY, Teoh SH, Chong MS, Lee ES, Tan LG, Mattar CN, Fisk NM, Choolani M, Chan J (2010a) Neo-vascularization and bone formation mediated by fetal mesenchymal stem cell tissue-engineered bone grafts in critical-size femoral defects. Biomaterials 31(4):608–620PubMedCrossRefGoogle Scholar
  37. Zhang ZY, Teoh SH, Teo EY, Khoon Chong MS, Shin CW, Tien FT, Choolani MA, Chan JK (2010b) A comparison of bioreactors for culture of fetal mesenchymal stem cells for bone tissue engineering. Biomaterials 31(33):8684–8695PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Experimental Fetal Medicine Group, Department of Obstetrics and Gynecology, Yong Loo Lin School of MedicineNational University of Singapore and National University Hospital SystemSingaporeSingapore

Personalised recommendations