Skip to main content

Duchenne Muscular Dystrophy: Isolation of CD133-Expressing Myogenic Progenitors from Blood and Muscle of DMD Patients

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells,Volume 3

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 3))

  • 1366 Accesses

Abstract

Duchenne Muscular Dystrophy is a lethal X-linked recessive disorder caused by deficiency of the protein dystrophin. It is the most common muscular dystrophy in children (with an incidence of 1 in 3500 male live births), presenting in early childhood (first onset at 3/4 years) and it is characterized by progressive and profound loss of muscle strength, followed by exhaustion of muscular regenerative capacity, fibrosis, and eventually disruption of the muscle tissue architecture. This condition leads to death into the second second/third decade of the patient life. In the last decade, stem cells have received much attention because of their potential use in cell-based therapies for human diseases. At the beginning, the expression of CD133 antigen was seen only in the haematopoietic system-derived CD34+ stem cells. Few years after, a similar population was also identified in muscle. Since 2004 when CD133+ stem cells were discovered, several works showed the pattern of expression of these cells, their ability to differentiate in vitro into specific lineage such as endothelial and muscular, their capacity to migrate from vessels after transplantation into animal model of muscular dystrophy and to participate to muscular regeneration rather than to replenish satellite cells pool. Moreover, CD133+ isolated from blood- and muscle of DMD patients were treated with lentiviral vectors to skip the mutated region of dystrophin in order to express a shorter dystrophin mRNA transcripts showing the correct coding reading frame. Transplanted into dystrophic animal models, these cells were able to ameliorate their pathological phenotype. This approach of using exon-skipping for the expression of human dystrophin within the DMD CD133+ cells should allow the use of the patient’s own stem cells, thus minimizing the risk of immunological graft rejection. According to these characteristic, blood- and muscle-derived CD133+ were considered feasible for a possible clinical usage in transplantation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benchaouir R, Meregalli M, Farini A, D’Antona G, Belicchi M, Goyenvalle A, Battistelli M, Bresolin N, Bottinelli R, Garcia L, Torrente Y (2007) Restoration of human dystrophin following transplantation of exon-skipping-engineered DMD patient stem cells into dystrophic mice. Cell Stem Cell 1:646–657

    Article  PubMed  CAS  Google Scholar 

  • Bertoni C (2005) Oligonucleotide-mediated gene editing for neuromuscular disorders. Acta Myol 24(3):194–201

    PubMed  CAS  Google Scholar 

  • Bertoni C (2008) Clinical approaches in the treatment of Duchenne muscular dystrophy (DMD) using oligonucleotides. Front Biosci 13:517–527

    Article  PubMed  CAS  Google Scholar 

  • Bhatia R, Munthe HA, Williams AD, Zhang F, Forman SJ, Slovak ML (2000) Chronic myelogenous leukemia primitive hematopoietic progenitors demonstrate increased sensitivity to growth factor-induced proliferation and maturation. Exp Hematol 28:1401–1412

    Article  PubMed  CAS  Google Scholar 

  • Biggar WD, Harris VA, Eliasoph L, Alman. B (2006) Long-term benefits of deflazacort treatment for boys with Duchenne muscular dystrophy in their second decade. Neuromuscul Disord 16:249–255

    Article  PubMed  CAS  Google Scholar 

  • Corbeil D, Roper K, Fargeas CA, Joester A, Huttner WB (2001) Prominin: a story of cholesterol, plasma membrane protrusions and human pathology. Traffic 2:82–91

    Article  PubMed  CAS  Google Scholar 

  • Cossu G, Sampaolesi M (2007) New therapies for Duchenne muscular dystrophy: challenges, prospects and clinical trials. Trends Mol Med 13:520–526

    Article  PubMed  CAS  Google Scholar 

  • Emery AE (2002) The muscular dystrophies. Lancet 359:687–695

    Article  PubMed  CAS  Google Scholar 

  • Gavina M, Belicchi M, Rossi B, Ottoboni L, Colombo F, Meregalli M, Battistelli M, Forzenigo L, Biondetti P, Pisati F, Parolini D, Farini A, Issekutz AC, Bresolin N, Rustichelli F, Constantin G, Torrente Y (2006) VCAM-1 expression on dystrophic muscle vessels has a critical role in the recruitment of human blood-derived CD133+ stem cells after intra-arterial transplantation. Blood 108:2857–2866

    PubMed  CAS  Google Scholar 

  • Goyenvalle A, Vulin A, Fougerousse F, Leturcq F, Kaplan JC, Garcia L, Danos O (2004) Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping. Science 306:1796–1799

    Article  PubMed  CAS  Google Scholar 

  • Hyser CL, Mendell JR (1988) Recent advances in Duchenne and Becker muscular dystrophy. Neurol Clin 6:429–453

    PubMed  CAS  Google Scholar 

  • Lang P, Bader P, Schumm M, Feuchtinger T, Einsele H, Fuhrer M, Weinstock C, Handgretinger R, Kuci S, Martin D, Niethammer D, Greil J (2004) Transplantation of a combination of CD133+ and CD34+ selected progenitor cells from alternative donors. Br J Haematol 124:72–79

    Article  PubMed  Google Scholar 

  • Limsuwan A, Pienvichit P, Limpijankit T, Khowsathit P, Hongeng S, Pornkul R, Siripornpitak S, Boonbaichaiyapruk S (2010) Transcoronary bone marrow-derived progenitor cells in a child with myocardial infarction: first pediatric experience. Clin Cardiol 33:E7–12

    Article  PubMed  Google Scholar 

  • McClorey G, Fall AM, Moulton HM, Iversen PL, Rasko JE, Ryan M, Fletcher S, Wilton SD (2006) Induced dystrophin exon skipping in human muscle explants. Neuromuscul Disord 16:583–590

    Article  PubMed  CAS  Google Scholar 

  • Meregalli M, Farini A, Torrente Y (2008) Combining stem cells and exon skipping strategy to treat muscular dystrophy. Expert Opin Biol Ther 8:1051–1061

    Article  PubMed  CAS  Google Scholar 

  • Miraglia S, Godfrey W, Yin AH, Atkins K, Warnke R, Holden JT, Bray RA, Waller EK, Buck DW (1997) A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 90:5013–5021

    PubMed  CAS  Google Scholar 

  • Negroni E, Riederer I, Chaouch S, Belicchi M, Razini P, Di Santo J, Torrente Y, Butler-Browne GS, Mouly V (2009) In vivo myogenic potential of human CD133+ muscle-derived stem cells: a quantitative study. Mol Ther 17:1771–1778

    Article  PubMed  CAS  Google Scholar 

  • O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110

    Article  PubMed  Google Scholar 

  • Peault B, Rudnicki M, Torrente Y, Cossu G, Tremblay JP, Partridge T, Gussoni E, Kunkel LM, Huard J (2007) Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol Ther 15:867–877

    Article  PubMed  CAS  Google Scholar 

  • Price FD, Kuroda K, Rudnicki MA (2007) Stem cell based therapies to treat muscular dystrophy. Biochim Biophys Acta 1772:272–283

    PubMed  CAS  Google Scholar 

  • Riviere C, Danos O, Douar. AM (2006) Long-term expression and repeated administration of AAV type 1, 2 and 5 vectors in skeletal muscle of immunocompetent adult mice. Gene Ther 13:1300–1308

    Article  PubMed  CAS  Google Scholar 

  • Shmelkov SV, Jun L, St Clair R, McGarrigle D, Derderian CA, Usenko JK, Costa C, Zhang F, Guo X, Rafii S (2004) Alternative promoters regulate transcription of the gene that encodes stem cell surface protein AC133. Blood 103:2055–2061

    Article  PubMed  CAS  Google Scholar 

  • Shmelkov SV, Butler JM, Hooper AT, Hormigo A, Kushner J, Milde T, St Clair R, Baljevic M, White I, Jin DK, Chadburn A, Murphy AJ, Valenzuela DM, Gale NW, Thurston G, Yancopoulos GD, D’Angelica M, Kemeny N, Lyden D, Rafii S (2008) CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors. J Clin Invest 118:2111–2120

    PubMed  CAS  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  PubMed  CAS  Google Scholar 

  • Tinsley J, Deconinck N, Fisher R, Kahn D, Phelps S, Gillis JM, Davies K (1998) Expression of full-length utrophin prevents muscular dystrophy in mdx mice. Nat Med 4:1441–1444

    Article  PubMed  CAS  Google Scholar 

  • Torrente Y, Belicchi M, Sampaolesi M, Pisati F, Meregalli M, D’Antona G, Tonlorenzi R, Porretti L, Gavina M, Mamchaoui K, Pellegrino MA, Furling D, Mouly V, Butler-Browne GS, Bottinelli R, Cossu G, Bresolin N (2004) Human circulating AC133(+) stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. J Clin Invest 114:182–195

    PubMed  CAS  Google Scholar 

  • Torrente Y, Belicchi M, Marchesi C, Dantona G, Cogiamanian F, Pisati F, Gavina M, Giordano R, Tonlorenzi R, Fagiolari G, Lamperti C, Porretti L, Lopa R, Sampaolesi M, Vicentini L, Grimoldi N, Tiberio F, Songa V, Baratta P, Prelle A, Forzenigo L, Guglieri M, Pansarasa O, Rinaldi C, Mouly V, Butler-Browne GS, Comi GP, Biondetti P, Moggio M, Gaini SM, Stocchetti N, Priori A, D’Angelo MG, Turconi A, Bottinelli R, Cossu G, Rebulla P, Bresolin N (2007) Autologous transplantation of muscle-derived CD133+ stem cells in Duchenne muscle patients. Cell Transplant 16:563–577

    PubMed  CAS  Google Scholar 

  • Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissman. IL (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 97:14720–14725

    Article  PubMed  CAS  Google Scholar 

  • Uchida S, Yokoo S, Yanagi Y, Usui T, Yokota C, Mimura T, Araie M, Yamagami S, Amano S (2005) Sphere formation and expression of neural proteins by human corneal stromal cells in vitro. Invest Ophthalmol Vis Sci 46:1620–1625

    Article  PubMed  Google Scholar 

  • Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG, Olweus J, Kearney J, Buck DW (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 90:5002–5012

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Stem Cell Laboratory, Department of Neurological Sciences, Università di Milano, has been supported by the Association Monégasque contre les Myopathies (AMM), Associazione La Nostra Famiglia Fondo DMD Gli Amici di Emanuele, the Associazione Amici del Centro Dino Ferrari, Fondazione Cariplo, Fondazione Telethon, EU’s Framework programme 7 Optistem 223098 and Provincia di Trento Fondo 12-03-5277500-01

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvan Torrente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Meregalli, M., Farini, A., Torrente, Y. (2012). Duchenne Muscular Dystrophy: Isolation of CD133-Expressing Myogenic Progenitors from Blood and Muscle of DMD Patients. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells,Volume 3. Stem Cells and Cancer Stem Cells, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2415-0_28

Download citation

Publish with us

Policies and ethics