Mesenchymal Stem Cells: Role for Delivering Nanoparticles to Brain Tumors

  • Mathilde Roger
  • Anne Clavreul
  • Philippe Menei
Part of the Stem Cells and Cancer Stem Cells book series (STEM, volume 3)


The prognosis of patients with malignant glioma remains extremely poor, despite surgery and improvements in radio- and chemo-therapies. Since the last decade, stem cells with a specific tropism for brain tumors such as mesenchymal stem cells (MSCs), have been considered as therapeutic cellular vectors to treat glioma. MSCs have been already used to deliver bioactive molecule after virus modification in experimental glioma models, however, the use of virus is not without risk in human. Nanocarrier systems like nanoparticles (NPs) are a promising tool to substitute viral vectors as they protect the therapeutic agent and allow its sustained release. However, new paradigms allowing tumor specific targeting and extensive intratumoral distribution must be developed to efficiently deliver NPs. Knowing the tropism of MSCs for brain tumors, these cells could serve as cell carriers for the transportation and local release of NPs in brain tumors.


Mesenchymal stem cells Nanoparticles Brain Glioma Nanocarrier Tropism 


  1. Allard E, Passirani C, Garcion E, Pigeon P, Vessieres A, Jaouen G, Benoit JP (2008) Lipid nanocapsules loaded with an organometallic tamoxifen derivative as a novel drug-carrier system for experimental malignant gliomas. J Control Release 130(2):146–153PubMedCrossRefGoogle Scholar
  2. Beduneau A, Saulnier P, Anton N, Hindre F, Passirani C, Rajerison H, Noiret N, Benoit JP (2006) Pegylated nanocapsules produced by an organic solvent-free method: Evaluation of their stealth properties. Pharm Res 23(9):2190–2199PubMedCrossRefGoogle Scholar
  3. Bexell D, Gunnarsson S, Tormin A, Darabi A, Gisselsson D, Roybon L, Scheding S, Bengzon J (2009) Bone marrow multipotent mesenchymal stroma cells act as pericyte-like migratory vehicles in experimental gliomas. Mol Ther 17(1):183–190PubMedCrossRefGoogle Scholar
  4. Bulte JW, Brooks RA, Moskowitz BM, Bryant LH Jr., Frank JA (1998) T1 and T2 relaxometry of monocrystalline iron oxide nanoparticles (MION-46L): theory and experiment. Acad Radiol 5(Suppl 1):S137–S140; discussion S145–S146PubMedCrossRefGoogle Scholar
  5. Delcroix GJ, Curtis KM, Schiller PC, Montero-Menei CN (2010) EGF and bFGF pre-treatment enhances neural specification and the response to neuronal commitment of MIAMI cells. Differentiation 80(4–5):213–227PubMedCrossRefGoogle Scholar
  6. D’Ippolito G, Howard GA, Roos BA,, Schiller PC (2006) Isolation and characterization of marrow-isolated adult multilineage inducible (MIAMI) cells. Exp Hematol 34(11):1608–1610PubMedCrossRefGoogle Scholar
  7. Franco OE, Shaw AK, Strand DW, Hayward SW (2010) Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol 21(1):33–39PubMedCrossRefGoogle Scholar
  8. Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16(3):381–390PubMedGoogle Scholar
  9. Glover DJ, Lipps HJ, Jans DA (2005) Towards safe, non-viral therapeutic gene expression in humans. Nat Rev Genet 6(4):299–310PubMedCrossRefGoogle Scholar
  10. Hamoudeh M, Kamleh MA, Diab R, Fessi H (2008) Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer. Adv Drug Deliv Rev 60(12):1329–1346PubMedCrossRefGoogle Scholar
  11. Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP (2002) A novel phase inversion-based process for the preparation of lipid nanocarriers. Pharm Res 19(6):875–880PubMedCrossRefGoogle Scholar
  12. Huynh NT, Passirani C, Saulnier P, Benoit JP (2009) Lipid nanocapsules: a new platform for nanomedicine. Int J Pharm 379(2):201–209PubMedCrossRefGoogle Scholar
  13. Jain RA (2000) The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 21(23):2475–2490PubMedCrossRefGoogle Scholar
  14. Kang SG, Shinojima N, Hossain A, Gumin J, Yong RL, Colman H, Marini F, Andreeff M, Lang FF (2010) Isolation and perivascular localization of mesenchymal stem cells from mouse brain. Neurosurgery 67(3):711–720PubMedCrossRefGoogle Scholar
  15. Mailander V, Lorenz MR, Holzapfel V, Musyanovych A, Fuchs K, Wiesneth M, Walther P, Landfester K, Schrezenmeier H (2008) Carboxylated superparamagnetic iron oxide particles label cells intracellularly without transfection agents. Mol Imaging Biol 10(3):138–146PubMedCrossRefGoogle Scholar
  16. Mishra PJ, Mishra PJ, Humeniuk R, Medina DJ, Alexe G, Mesirov JP, Ganesan S, Glod JW, Banerjee D (2008) Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res 68(11):4331–4339PubMedCrossRefGoogle Scholar
  17. Morille M, Montier T, Legras P, Carmoy N, Brodin P, Pitard B, Benoit JP, Passirani C (2010) Long-circulating DNA lipid nanocapsules as new vector for passive tumor targeting. Biomaterials 31(2):321–329PubMedCrossRefGoogle Scholar
  18. Motaln H, Schichor C, Lah TT (2010) Human mesenchymal stem cells and their use in cell-based therapies. Cancer 116(11):2519–2530PubMedCrossRefGoogle Scholar
  19. Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J, Chen J, Hentschel S, Vecil G, Dembinski J, Andreeff M, Lang FF (2005) Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 65(8):3307–3318PubMedGoogle Scholar
  20. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147PubMedCrossRefGoogle Scholar
  21. Prabha S, Labhasetwar V (2004) Critical determinants in PLGA/PLA nanoparticle-mediated gene expression. Pharm Res 21(2):354–364PubMedCrossRefGoogle Scholar
  22. Roger M, Clavreul A, Venier-Julienne MC, Passirani C, Sindji L, Schiller P, Montero-Menei C, Menei P (2010) Mesenchymal stem cells as cellular vehicles for delivery of nanoparticles to brain tumors. Biomaterials 31(32):8393–8401PubMedCrossRefGoogle Scholar
  23. Roger M, Clavreul A, Venier-Julienne MC, Passirani C, Sindji L, Schiller P, Montero-Menei C, Menei P (2011a) Mesenchymal stem cells as cellular vehicles for delivery of nanoparticles to brain tumors. Biomaterials 31(32):8393–8401CrossRefGoogle Scholar
  24. Roger M, Clavreul A, Huynh NT, Passirani C, Schiller P, Vessieres A, Montero-Menei C, Menei P (2011b) Ferro-ciphenol lipid nanocapsule delivery by mesenchymal stromal cells in brain tumor therapy. Int J Pharm. doi:10.1016/j.ijpharm.2011.04.058Google Scholar
  25. Shive MS, Anderson JM (1997) Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 28(1):5–24PubMedCrossRefGoogle Scholar
  26. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466PubMedCrossRefGoogle Scholar
  27. Vessieres A, Top S, Beck W, Hillard E, Jaouen G (2006) Metal complex SERMs (selective oestrogen receptor modulators). The influence of different metal units on breast cancer cell antiproliferative effects. Dalton Trans 4:529–541PubMedCrossRefGoogle Scholar
  28. Wang HC, Brown J, Alayon H, Stuck BE (2010) Transplantation of quantum dot-labelled bone marrow-derived stem cells into the vitreous of mice with laser-induced retinal injury: survival, integration and differentiation. Vision Res 50(7):665–673PubMedCrossRefGoogle Scholar
  29. Wissing SA, Kayser O, Muller RH (2004) Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 56(9):1257–1272PubMedCrossRefGoogle Scholar
  30. Yin J, Kim JK, Moon JH, Beck S, Piao D, Jin X, Kim SH, Lim YC, Nam DH, You S, Kim H, Choi YJ (2011) hMSC-mediated concurrent delivery of endostatin and carboxylesterase to mouse xenografts suppresses glioma initiation and recurrence. Mol Ther 19(6):1161–1169Google Scholar
  31. Yukawa H, Kagami Y, Watanabe M, Oishi K, Miyamoto Y, Okamoto Y, Tokeshi M, Kaji N, Noguchi H, Ono K, Sawada M, Baba Y, Hamajima N, Hayashi S (2010) Quantum dots labeling using octa-arginine peptides for imaging of adipose tissue-derived stem cells. Biomaterials 31(14):4094–4103PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.INSERM Unit 646, IBS-CHU Angers, 4, rue LarreyUniversité d’AngersAngersFrance

Personalised recommendations