Skip to main content

A Symmetry Adapted Approach to the Dynamic Jahn-Teller Problem

  • Chapter
  • First Online:
Vibronic Interactions and the Jahn-Teller Effect

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 23))

Abstract

In this article we present a symmetry-adapted approach aimed to the accurate solution of the dynamic Jahn-Teller (JT) problem. The algorithm for the solution of the eigen-problem takes full advantage of the point symmetry arguments. The system under consideration is supposed to consist of a set of electronic levels \({\Gamma }_{1},{\Gamma }_{2}\ldots {\Gamma }_{n}\) labeled by the irreducible representations (irreps) of the actual point group, mixed by the active JT and pseudo JT vibrational modes \({\Gamma }_{1},{\Gamma }_{2}\ldots {\Gamma }_{f}\) (vibrational irreps). The bosonic creation operators b +(Γγ) are transformed as components γ of the vibrational irrep Γ. The first excited vibrational states are obtained by the application of the operators \({b}^{+}(\Gamma \gamma )\) to the vacuum: \({b}^{+}(\Gamma \gamma )\vert n = 0,{A}_{1}\rangle = \vert n = 1,\Gamma \gamma \rangle\) and therefore they belong to the symmetry Γγ. Then the operators b +(Γγ) act on the set \(\vert n = 1,\Gamma \gamma \rangle\) with the subsequent Clebsch-Gordan coupling of the resulting irreps. In this way one obtains the basis set \(\vert n = 2,{\Gamma }^{{\prime}}{\gamma }^{{\prime}}\rangle\) with \({\Gamma }^{{\prime}}\in \Gamma \otimes \Gamma \). In general, the Gram-Schmidt orthogonalization is required at each step of the procedure. Finally, the generated vibrational bases are coupled to the electronic ones to get the symmetry adapted basis in which the full matrix of the JT Hamiltonian is blocked according to the irreps of the point group. The approach is realized as a computer program that generates the blocks and evaluates all required characteristics of the JT systems. The approach is illustrated by the simulation of the vibronic charge transfer (intervalence) optical bands in trimeric mixed valence clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Englman R (1972) The Jahn–Teller effect in molecules and crystals. Wiley, London

    Google Scholar 

  2. Bersuker IB, Polinger VZ (1989) Vibronic interactions in molecules and crystals. Springer, Berlin

    Book  Google Scholar 

  3. Bersuker IB (2006) The Jahn-Teller effect. Cambridge University Press, Cambridge

    Book  Google Scholar 

  4. Ding X-Q, Bominaar EL, Bill E, Winkler H, Trautwein AX, Drüeke S, Chaudhuri P, Weighardt K (1990) J Chem Phys 92:178; Gamelin DR, Bominaar EL, Kirk ML, Wieghardt K, Solomon EI (1996) J Am Chem Soc 118:8085

    Google Scholar 

  5. Marks AJ, Prassides K (1993) New J Chem 17:59; Marks AJ, Prassides K (1993) J Chem Phys 98:4805

    Google Scholar 

  6. (a) Borshch SA, Bominaar EL, Blondin G, Girerd G (1993) J Am Chem Soc 115:5155; (b) Bominaar EL, Borshch SA, Girerd JJ (1994) J Am Chem Soc 116:5362

    Google Scholar 

  7. Clemente-Juan JM, Coronado E (1999) Coord Chem Rev 361:193

    Google Scholar 

  8. (a) Borras-Almenar JJ, Clemente-Juan JM, Coronado E, Tsukerblat BS (1995) Chem Phys 195:1; (b) Borras-Almenar JJ, Clemente-Juan JM, Coronado E, Tsukerblat BS (1995) Chem Phys 195:17; (c) Borras-Almenar JJ, Clemente-Juan JM, Coronado E, Tsukerblat BS (1995) Chem Phys 195:29

    Google Scholar 

  9. (a) Polinger VZ, Boldirev SI (1986) Phys Stat Sol (b) 137:241; (b) Boldyrev SI, Polinger VZ, Bersuker IB (1981) Fiz Tverdogo Tela (Russ) 23:746

    Google Scholar 

  10. Sakamoto N, Muramatsu S (1978) Phys Rev B 17:868

    Article  CAS  Google Scholar 

  11. Perlin YuE, Tsukerblat BS (1984) In: Perlin YuE, Wagner M (eds) The dynamical Jahn-Teller effect in localized systems, vol 7. Elsevier, Amsterdam, pp 251–346

    Google Scholar 

  12. Gütlich P, Hauser A, Spiering H (1994) Angew Chem Int Ed Engl 33:2024

    Article  Google Scholar 

  13. Kaplan MD, Vekhter BG (1995) Cooperative phenomena in Jahn-Teller crystals Plenum, New York

    Google Scholar 

  14. Köppel H, Domcke W, Cederbaum LS (1984) Adv Chem Phys 57:59

    Article  Google Scholar 

  15. Faraji S, Gindensperger E, Köppel H (2009) In: Köppel H, Yarkony DR, Barentzen (eds) The Jahn-Teller effect. Fundamentals and implications for physics and chemistry, Series of Chemical Physics, vol 97. Springer, Heidelberg, pp 239–276

    Google Scholar 

  16. Grosso G, Martinelli L, Parravicini GP (1995) Phys Rev B 51:13033

    Article  CAS  Google Scholar 

  17. Pooler DR (1978) J Phys A 11:1045; Pooler DR (1980) J Phys A 13:1029

    Google Scholar 

  18. O’Brien MCM (1969) Phys Rev 187:329; O’Brien MCM (1971) J Phys C 4:2524

    Google Scholar 

  19. Tsukerblat B (2006) Group theory in chemistry and spectroscopy. Dover, Mineola/New York

    Google Scholar 

  20. Koster GF, Dimmok JO, Wheeler RG, Statz H (1963) Properties of the thirty-two point groups. MIT Press, Cambridge

    Google Scholar 

  21. Clemente-Juan JM, Palii A, Coronado E, Tsukerblat B (2011) J Comp Chem, submitted

    Google Scholar 

  22. Borras-Almenar JJ, Clemente-Juan JM, Coronado E, Palii AV, Tsukerblat BS (2001) In: Miller J, Drillon M (eds) Magnetoscience-from molecules to materials. Willey-VCH, New York, pp 155–210

    Chapter  Google Scholar 

  23. (a) Wong KY, Schatz PN (1981) Prog Inorg Chem 28:369; (b) Piepho SB, Krausz ER, Shatz PN (1978) J Am Chem Soc 100:2996

    Google Scholar 

  24. (a) Piepho SB (1988) J Am Chem Soc 110:6319; (b) Piepho SB (1990) J Am Chem Soc 112:4197

    Google Scholar 

  25. Borrás-Almenar JJ, Coronado E, Ovstrosvsky SM, Palii AV, Tsukerblat BS (1999) Chem Phys 240:149

    Article  Google Scholar 

Download references

Acknowledgments

B.T. acknowledges financial support of the Israel Science Foundation (ISF, grant no. 168/09). A.P. thanks the Paul Scherrer Institute for financial support that made possible his participation in the Jahn-Teller Symposium. The financial support from STCU (project N 5062) and the Supreme Council on Science and Technological Development of Moldova is gratefully acknowledged. J.M.C.J. and E.C. thank Spanish MICINN (CSD2007-00010 CONSOLIDER-INGENIO in Molecular Nanoscience, MAT2007-61584, CTQ-2008-06720 and CTQ-2005-09385), Generalitat Valenciana (PROMETEO program), and the EU (MolSpinQIP project and ERC Advanced Grant SPINMOL) for the financial support. We thank Prof. V. Polinger for the discussion and Dr. O. Reu for his help in the artwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Tsukerblat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tsukerblat, B., Palii, A., Clemente-Juan, J.M., Coronado, E. (2011). A Symmetry Adapted Approach to the Dynamic Jahn-Teller Problem. In: Atanasov, M., Daul, C., Tregenna-Piggott, P. (eds) Vibronic Interactions and the Jahn-Teller Effect. Progress in Theoretical Chemistry and Physics, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2384-9_3

Download citation

Publish with us

Policies and ethics