Advertisement

Mixed Valence Iron Dimer in the Generalized Vibronic Model: Optical and Magnetic Properties

  • Serghei M. Ostrovsky
Chapter
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 23)

Abstract

A mixed valence iron dimer \([{\mathrm{L}}^{1}{\mathrm{Fe}}_{2}{(\mu -\mathrm{OAc})}_{2}]({\mathrm{ClO}}_{4})\) is investigated in the framework of the generalized vibronic model which takes into account both the local vibrations on the metal sites (Piepho-Krausz-Schatz model) and the molecular vibrations changing the intermetallic distance (suggested by Piepho). It is shown that the behaviour of the system is determined by a strong competition between three main processes: double exchange interaction and vibronic coupling with both types of vibrations. The optical and magnetic properties of the regarded compound are reported. The influence of the key parameters of the system on these properties is studied in the framework of the presented theoretical model. The degree of delocalization of the itinerant ‘extra’ electron and probability distribution in configuration (qQ) space are calculated at different values of temperature.

Keywords

Total Spin Double Exchange Magnetic Quantum Number Vibronic Coupling Double Exchange Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Financial support of STCU (project N5062) is highly appreciated.

References

  1. 1.
    Bominaar EL, Achim C, Borshch SA, Girerd J-J, Münck E (1997) Inorg Chem 36:3689CrossRefGoogle Scholar
  2. 2.
    Achim C, Bominaar EL, Münck E (1998) J Biol Inorg Chem 3:126CrossRefGoogle Scholar
  3. 3.
    Papaefthymiou V, Girerd J-J, Moura I, Moura JJG, Münck E (1987) J Am Chem Soc 109:4703CrossRefGoogle Scholar
  4. 4.
    Noodleman L, Case DA (1992) Adv Inorg Chem 38:423CrossRefGoogle Scholar
  5. 5.
    Gamelin DR, Bominaar EL, Kirk ML, Wieghardt K, Solomon EI (1996) J Am Chem Soc 118:8085CrossRefGoogle Scholar
  6. 6.
    Gamelin DR, Bominaar EL, Mathoniere C, Kirk ML, Wieghardt K, Girerd J-J, Solomon EI (1996) Inorg Chem 35:4323CrossRefGoogle Scholar
  7. 7.
    Zener C (1951) Phys Rev 82:403CrossRefGoogle Scholar
  8. 8.
    Anderson PW, Hasegawa H (1955) Phys Rev 100:675–681CrossRefGoogle Scholar
  9. 9.
    Piepho SB, Krausz ER, Schatz PN (1978) J Am Chem Soc 100:2996CrossRefGoogle Scholar
  10. 10.
    Schatz PN (1980) In: Brown DB (ed) Mixed-valence compounds. Reidel, Dordrecht, p 115Google Scholar
  11. 11.
    Wong KY, Schatz PN (1981) Prog Inorg Chem 28:369CrossRefGoogle Scholar
  12. 12.
    Piepho SB (1988) J Am Chem Soc 110:6319CrossRefGoogle Scholar
  13. 13.
    Piepho SB (1990) J Am Chem Soc 112:4197CrossRefGoogle Scholar
  14. 14.
    Borras-Almenar JJ, Coronado E, Ostrovsky SM, Palii AV, Tsukerblat BS (1999) Chem Phys 240:149CrossRefGoogle Scholar
  15. 15.
    Saal C, Mohanta S, Nag K, Dutta SK, Werner R, Haase W, Duin E, Johnson MK (1996) Ber Buns Phys Chem 100:2086Google Scholar
  16. 16.
    Dutta SK, Ensling J, Werner R, Flörke U, Haase W, Gütlich P, Nag K (1997) Angew Chem 109:107CrossRefGoogle Scholar
  17. 17.
    Ostrovsky SM, Werner R, Nag K, Haase W (2000) Chem Phys Lett 320:295CrossRefGoogle Scholar
  18. 18.
    Böhm MC, Saal C, Haase W (1999) Inorg Chim Acta 291:82CrossRefGoogle Scholar
  19. 19.
    Robin MB, Day P (1967) Adv Inorg Radiochem 10:247CrossRefGoogle Scholar
  20. 20.
    Ostrovsky S (2003) In : Haase W, Wrobel S (eds) Relaxation phenomena. Springer, Heidelberg, pp 609–626Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute of Applied Physics of the Academy of Sciences of MoldovaKishinevMoldova

Personalised recommendations